首页|基于机器学习和logistic回归分析探究老年人死亡的影响因素

基于机器学习和logistic回归分析探究老年人死亡的影响因素

扫码查看
目的 探讨中国老年人死亡风险因素,并构建个体化风险预测模型。方法 采用2015-2020年中国健康与养老追踪调查(CHARLS)数据,以老年人为研究对象,收集相应的人口学、生活方式、疾病史和体格检查相关信息,将数据集随机分为训练集和验证集(7∶3),运用逻辑回归、随机森林、极端梯度提升(XGBoost)3种分类算法建立老年人死亡预测模型,并选出最佳模型进行可解释性分析。结果 共纳入5 505例研究对象,其中死亡人数为977人。3种模型预测结果显示XGBoost模型具有较好的预测效果(曲线下面积为0。756,95%CI:0。720~0。792),夏普利值分解方法(SHAP)结果显示体重指数、年龄、性别、受教育程度、婚姻状况是老年人死亡的前5位危险因素。结论 XGBoost模型对老年人死亡风险有良好的预测效果,SHAP模型对个体化死亡风险预测提供明确解释。
Influencing Factors of Elderly Death Based on Machine Learning and Logistic Regression Analysis
Objective To investigate the risk factors of mortality risk in Chinese elderly over 65 years old,and to construct an individualized risk prediction model.Methods Using the survey data of the China health and retirement longitudinal survey(CHARLS)from 2015 to 2020,the elderly were selected as the research objects to collect relevant information about demography,lifestyle,disease history,and physical examination.The data set was randomly divided into a training set and a verification set(7∶3).Three classification algorithms,logistic regression,random forest and extreme gradient boosting(XGBoost)were used to establish a prediction model for elderly death,and the best model was selected for interpretability analysis.Results This study enrolled 5 505 elderly people,including 977 deaths.The prediction results of the three models showed that the extreme gradient elevation model had a good prediction effect(area under the curve was 0.756,95%CI:0.720-0.792),and the results of the explanatory model Shapley additive explanations(SHAP)showed that body mass index,age,gender,education level,and marital status were the top five factors influencing the death of the elderly.Conclusion The XGBoost model has a good predictive effect in predicting the death risk of the elderly,and the SHAP model provides a clear explanation for the individualized death risk prediction.

elderly peoplemortality predictionmachine learningextreme gradient boosting

蒋睿、贾诗宇、徐琳、吴建、王赛怡

展开 >

河南省胸科医院河南省直属机关第二门诊部,河南郑州 450003

郑州大学公共卫生学院,河南郑州 450001

老年人 死亡预测 机器学习 极端梯度提升

2024

河南医学研究
河南省医学科学院

河南医学研究

影响因子:0.979
ISSN:1004-437X
年,卷(期):2024.33(24)