首页|基于ResNet深度神经网络构建眼部疾病分类诊断模型的研究

基于ResNet深度神经网络构建眼部疾病分类诊断模型的研究

扫码查看
目的 本研究旨在通过构建基于ResNet50深度神经网络的诊断模型,实现对青光眼、白内障、糖尿病视网膜病的临床分类和诊断。方法 使用ResNet50深度神经网络对来自眼疾分类数据的4 217张眼底图像进行训练,训练次数为3 000轮,最终将测试集中准确性最高的模型参数用于诊断模型。使用混淆矩阵、准确率、召回率、F1分数、AUC曲线下面积等指标评估模型的性能。结果 该模型在测试集上的准确率为94。25%,精确率94。42%,召回率为94。25%,F1值为94。23%,AUC曲线下面积的均值为0。9856,说明该诊断模型在临床分类诊断青光眼、白内障、糖尿病视网膜病方面具有较高的准确性。结论 基于ResNet50深度神经网络的诊断模型性能较好,可以用于青光眼、白内障、糖尿病视网膜病变的预测,为临床的分类和诊断提供有价值的参考。
A study on construction of an eye disease classification and diagnosis model by utilizing resnet deep neural network
Objective The purpose of this study was to develop a diagnostic model based on the ResNet50 deep neural network for the classification and diagnosis of glaucoma,cataracts,and diabetic retinopathy.Methods The ResNet50 model was trained on 4 217 fundus images from the eye disease classification data and was evaluated using 3 000 epochs.The model parameters with the highest accuracy on the test set were selected for the diagnostic model.Performance was evaluated using metrics such as confusion matrix,accuracy,recall,F1 score,and the area under the receiver operating characteristic curve(AUC).Results The diagnostic model achieved an accuracy of 94.25%on the test set,with a precision of 94.42%,a recall of 94.25%,an F1 score of 94.23%,and a mean AUC of 0.9856.These results indicate that the diagnostic model has high accuracy for the classification and diagnosis of glaucoma,cataracts,and diabetic reti-nopathy.Conclusion The diagnostic model based on the ResNet50 deep neural network is considered to have good per-formance and can be used for the prediction of glaucoma,cataracts,and diabetic retinopathy,providing valuable refer-ence for clinical classification and diagnosis.

Deep learning networkResNet50Classification diagnosis modelGlaucomacataractDiabetic retinopathy

宫阿娟

展开 >

安徽医科大学第二附属医院,安徽合肥 230601

深度学习网络 ResNet50 分类诊断模型 青光眼 白内障 糖尿病视网膜病

安徽医科大学校科研基金

2021xkj042

2024

医药论坛杂志
中华预防医学会,河南省医学情报研究所

医药论坛杂志

影响因子:0.47
ISSN:1672-3422
年,卷(期):2024.45(4)
  • 23