首页|基于改进离散鲸鱼优化算法的机器人路径规划

基于改进离散鲸鱼优化算法的机器人路径规划

扫码查看
为了解决传统算法在求解移动机器人路径规划问题中所存在的收敛速度慢、容易陷入局部最优等缺陷,提出了一种改进的离散鲸鱼优化算法.首先,采用蚁群算法对种群进行初始化,提高初始解的质量;其次,利用改进的非线性收敛因子平衡算法的全局勘探和局部搜索能力,避免算法陷入局部最优;最后,结合路径规划问题设计了交叉算子、变邻域搜索算子和变异算子改进鲸鱼算法的更新公式,提升了算法的收敛速度和搜索精度.通过TSPLIB标准算例库,将改进算法与其他算法进行对比,验证了算法改进的有效性.在不同规模的全局路径规划仿真环境下,实验结果表明:改进的算法可快速且稳定地获取全局最优路径,有效缩短路径长度、减少路径拐点数,在路径规划问题上具有良好的适用性.
Path planning of robot based on improved discrete whale optimization algorithm
To solve the shortcomings of traditional algorithm in solving the mobile robot path planning problem,such as slow convergence speed and easy to fall into the local optimum.An improved discrete whale optimization algorithm is proposed.First,the method uses an ant colony algorithm to initialize the population and improve the quality of the initial solution.Then,an improved nonlinear convergence factor is utilized to balance the global exploration and local search capabilities of the algorithm to avoid the algorithm from falling into a local optimum.Finally,the new crossover operator,variable neighbourhood search operator and mutation operator are introduced to improve the update formula of the whale optimization algorithm in combination with the path planning problem,which improves the convergence speed and search accuracy of the algorithm.The effectiveness of the algorithm improvement is verified by comparing the improved algorithm with other algorithms through the TSPLIB standard arithmetic library.Under the global path planning simulation environment of different sizes,the experimental results show that the improved algorithm can quickly and stably obtain the global optimal path,effectively shorten the path length,reduce the number of path inflection points,and has good applicability in the path planning problem.

mobile robotdiscrete whale optimization algorithmpath planningnonlinear convergence factor

曾林鹏、姚运航、张怡航、李新建、孔晓红

展开 >

河南科技学院机电学院,河南新乡 453003

移动机器人 离散鲸鱼算法 路径规划 非线性收敛因子

河南省科技攻关项目

222102110095

2024

河南科技学院学报(自然科学版)
河南科技学院

河南科技学院学报(自然科学版)

影响因子:0.557
ISSN:1673-6060
年,卷(期):2024.52(4)