首页|基于LASSO回归的心脏神经官能症刚虚证(肝肾阴亏、肝阳上亢证)关联因素筛选及诊断模型构建

基于LASSO回归的心脏神经官能症刚虚证(肝肾阴亏、肝阳上亢证)关联因素筛选及诊断模型构建

扫码查看
目的:利用LASSO回归联合Nomogram构建心脏神经官能症刚虚证(肝肾阴亏、肝阳上亢证)的诊断模型.方法:采用单中心前瞻性研究,收集141例心脏神经官能症患者的临床资料,纳入分析变量包括年龄、民族、婚姻、教育程度、脑力/体力工作、体质量指数(BMI)、中医症状、中医五态人格量表各因子得分、汉密尔顿焦虑量表-14项、汉密尔顿抑郁量表-24项、症状自测评量表各因子均分.通过LASSO回归筛选与刚虚证诊断显著相关的影响因素,纳入二元多因素Logistic回归分析构建诊断模型,并对模型预测区分度及校准度评价,利用10重交叉验证进行内部验证,最后对模型进行Nomogram可视化,并根据ROC曲线确定诊断阈值.结果:共纳入刚虚证患者70例,非刚虚证患者71例.LASSO回归筛选出与刚虚证诊断相关性最显著的5个变量为女性、年龄、疲乏无力、善嗳气、五态人格中少阳积分.模型AUC为0.85,H-L检验为2.94(P=0.9824),提示模型区分度及校准度较好,10重交叉内部验证结果提示AUC为0.82.结论:LASS O回归联合Nomogram构建的诊断模型可协助诊断心脏神经官能症刚虚证,但研究结果的准确性尚待大样本临床研究进一步验证.
Study on the State Identification Model of Cardiac Neurosis Patients with Rigid-Deficiency Symptom Based on LASSO Regression
Objective:To construct a diagnostic model for cardiac neurosis with rigid-deficiency symptoms using LASSO regression combined with Nomogram.Methods:A single-center prospective study was conducted to collect the clinical data of 141 patients with cardiac neurosis.Variables included in the analysis were age,ethnicity,marriage,education,mental/physical work,BMI,traditional Chinese medicine symptoms,and the scores of Chinese medicine five-state personality,the Hamilton Anxiety Inventory-14-item scale,the Hamilton Depression Inventory-24-item scale and the Symptom Checklist-90.The influencing factors significantly associated with the diagnosis of rigid-deficiency symptoms were screened by LASSO regression,incorporated into a binary multi-factor Logistic regression analysis to construct a diagnostic model,and the model was evaluated for predictive discrimination and calibration,internally validated using 10-fold cross-validation.Finally,the model was visualized by Nomogram,and the diagnostic threshold was determined according to the ROC curve.Results:A total of 70 patients with rigid deficiency syndrome and 71 patients with non-rigid deficiency syndrome were included.The LASSO regression screened the five most significant variables associated with the diagnosis of rigid-deficiency symptoms as female,age,fatigue,belching,and Shaoyang points in the five personality states.The model AUC was 0.85 and the H-L test was 2.94(P=0.982 4),suggesting good model differentiation and calibration,and the 10-fold cross-over internal validation results suggested an AUC of 0.82.Conclusion:In this study,the diagnostic model constructed by LASSO regression combined with Nomogram can help clinicians to rapidly diagnose patients with cardiac neurosis with rigid-deficiency symptoms,but the accuracy of the results needs to be further verified by large-sample clinical studies.

cardiac neurosisrigid-deficiency symptomrigid-gentle syndrome differentiationclinical diagnostic modelLASSO regressionNomogram

王瑞婷、杨曜嘉、张慧、原晨、柳红良、李娅、王韵涵、赵鹏

展开 >

北京中医药大学东直门医院,北京 100700

中国中医科学院广安门医院,北京 100053

北京中医医院顺义医院,北京 101399

航空总医院,北京 100012

洛阳市中医院,河南 洛阳 471099

展开 >

心脏神经官能症 刚虚证 刚柔辨证 临床诊断模型 LASSO回归 列线图

"十二五"国家科技支撑项目河南省中医药科学研究专项课题北京市级中医药专家学术经验继承人(第六批)

2013BAI02B092023ZY2174

2024

中医药导报
湖南省中医药学会 湖南省中医管理局

中医药导报

CSTPCD
影响因子:0.952
ISSN:1672-951X
年,卷(期):2024.30(7)