首页|基于太赫兹时域光谱和PCA-SVM算法的甜蜜素含量分析

基于太赫兹时域光谱和PCA-SVM算法的甜蜜素含量分析

扫码查看
光谱分析是研究太赫兹(THz)辐射与物质相互作用的重要手段.采用全光纤式 THz 时域光谱(THz Time-Domain Spectroscopy,THz-TDS)系统测试了不同含量甜蜜素样品的透过率光谱,发现甜蜜素的特征吸收峰位置在1.4 THz和1.7 THz附近;采用主成分分析结合支持向量机(PCA-SVM)的方法建立了甜蜜素含量回归模型,然后将其预测结果与遗传算法结合偏最小二乘(GA-PLS)模型进行分析比较,并引入决定系数(R2)和预测均方根误差(RMSE)来评价建模效果,对以10%含量梯度制作的样品集进行检测.研究结果表明,采用PCA-SVM、SVM和GA-PLS方法建立的预测模型的RMSE分别为1.885%、1.926%和2.432%.因此,PCA-SVM方法的预测效果最优,且预测数据与实际数据均表现出良好的相关性,获得了效果良好的含量回归预测模型,为甜蜜素含量的检测与分析提供了一种有效手段.
Analysis of Saccharin Content Based on Terahertz Time-Domain Spectroscopy and PCA-SVM Algorithm
Spectral analysis is an important means of studying the interaction between THz radiation and mat-ter.The transmittance spectra of samples with different levels of saccharin are tested using an all-fiber THz-TDS system,and it is found that the characteristic absorption peaks of saccharin are located around 1.4 THz and 1.7 THz.PCA-SVM method is used to establish the regression model of saccharin content,and the pre-diction results are analyzed and compared with the GA-PLS model.Correlation coefficients and RMSE are in-troduced to evaluate the modeling effect,and the sample set made with a 10%content gradient is tested.The research results show that the RMSE of the prediction models established using PCA-SVM,SVM and GA-PLS methods are 1.885%,1.926%and 2.432%,respectively.Therefore,the PCA-SVM method has the best prediction performance,and the predicted data show a good correlation with the actual data.A content regression prediction model with good performance is obtained,which provides an effective means for the de-tection and analysis of saccharin content.

THz-TDSprincipal component analysissupport vector machinecontent regression prediction model

王睿璇、谭智勇、曹俊诚

展开 >

中国科学院上海微系统与信息技术研究所,上海 200050

集成电路材料全国重点实验室,上海 200050

中国科学院大学材料与光电研究中心,北京 100049

太赫兹时域光谱 主成分分析 支持向量机 含量回归预测模型

国家自然科学基金项目国家自然科学基金项目

6192781361991432

2024

红外
中国科学院上海技术物理研究所

红外

影响因子:0.317
ISSN:1672-8785
年,卷(期):2024.45(9)
  • 3