首页|一种基于IPSO-RF的火控系统健康预测方法

一种基于IPSO-RF的火控系统健康预测方法

扫码查看
坦克的火控系统具有充分发挥坦克火力和提高坦克在战场上生存能力的重要作用,是坦克系统中的核心部位,因此对其进行健康预测尤为重要.为了提高预测精度,提出一种基于改进参数的粒子群优化算法和随机森林算法(IPSO-RF算法)的火控系统健康预测方法.首先,引入自适应权重对粒子群优化算法进行改进,再通过其对随机森林算法核心参数进行寻优并建立健康预测模型,最后选用火控系统火控计算机与传感器分系统的电源模块作为实验对象,同时与LSTM、GSM-SVM、BAYES-RF、GSM-RF模型进行对比.实验结果表明,该方法在预测精度和预测效果方面优于其他对比模型.
A Health Prediction Method of Fire Control Systems Based on IPSO-RF
The fire control system is one of core parts of the tank,which plays an important role in im-proving tank firepower and survivability on the battlefield,so health prediction for the fire control sys-tem is particularly important.In order to improve the prediction accuracy,a health prediction method of fire control systems based on the improved particle swarm optimization algorithm and random forest algorithm(IPSO-RF algorithm)was proposed.First,the adaptive weight was introduced to improve the particle swarm optimization algorithm.Then the core parameters of the random forest algorithm were optimized and the health prediction model was established.Finally,the power module of the fire con-trol computer and sensor subsystem was selected as the experimental object and compared with LSTM,GSM-SVM,BAYES-RF and GSM-RF models.The experimental results show that the proposed method is superior to other models in terms of prediction accuracy and effect.

health predictionrandom forestparticle swarm optimizationfire control system

高锦涛、李英顺、郭占男、刘海洋

展开 >

沈阳工业大学化工过程自动化学院,辽宁沈阳 111003

大连理工大学控制科学与工程学院,辽宁大连 116200

沈阳顺义科技有限公司,辽宁沈阳 110000

健康预测 随机森林 粒子群优化 火控系统

辽宁省科学技术计划项目

22JH1/1040007

2024

火炮发射与控制学报
中国兵工学会

火炮发射与控制学报

北大核心
影响因子:0.337
ISSN:1673-6524
年,卷(期):2024.45(3)