首页|基于BP神经网络的密集度序列估计

基于BP神经网络的密集度序列估计

扫码查看
考虑到射击冲击载荷造成的弱相关误差对密集度的影响,以及射击试验样本量小、无法获得总体分布特性全貌的情况,继续使用传统的密集度估计方法会影响试验结论的可信度,故提出一种改进型的速射火炮密集度估计方法.在多组试验数据一致性检验的基础上,引入BP神经网络,将弹着点时序信息纳入考量,进行弹着点仿真预测以解决小子样问题.最后,通过最大熵方法获得弹着点坐标服从统计规律的概率密度函数,并得出密集度.实例分析表明,该方法能更准确地刻画反映速射火炮射弹散布真实情形,分析结果准确可靠,能够为速射火炮密集度试验数据分析与评估提供一种有效的借鉴.
Density Sequence Estimation Based on BP Neural Network
Taking into account the impact of the weak correlation error caused by the firing impact load on the dispersion,and the small sample size of the firing test,it is impossible to obtain a full pic-ture of the overall dispersion characteristics.The credibility of the test conclusion would be affected if continuing to use the traditional method,so an improved density estimation method of rapid-fire gun was proposed.On the basis of the consistency test of multiple sets of test data,the timing information of impact points were analyzed,and impact points were simulated and predicted by the BP neural net-work method to solve the small sample problem.Finally,the probability density function with coordi-nates of impact points obeying statistical laws was obtained based on the maximum entropy method,and the density was calculated.Example analysis shows that this method can more accurately describe the real dispersion situation of rapid-fire gun,and analysis results are accurate and reliable.This method can provide an effective reference for the analysis and evaluation density test data of rapid-fire gun.

rank-sun testBP neural networkShannon entropydensity

孙亚楠、胡敬坤、撒彦成、张超

展开 >

63870部队,陕西华阴 714200

秩和检验 BP神经网络 香农熵 密集度

2024

火炮发射与控制学报
中国兵工学会

火炮发射与控制学报

北大核心
影响因子:0.337
ISSN:1673-6524
年,卷(期):2024.45(4)
  • 11