首页|基于EEMD与极限提升树的传感器故障诊断方法

基于EEMD与极限提升树的传感器故障诊断方法

扫码查看
传感器在工业互联等关键领域扮演着重要角色,通过故障诊断方法保障其数据的可靠性至关重要.本文提出一种基于EEMD与极限提升树的传感器故障诊断方法,以提高对传感器故障的准确识别和及时处理能力.该方法通过采集电压电流传感器数据,以故障注入方式建立数据集,利用EEMD对数据进行降噪与特征提取,并通过极限提升树进行训练,从而建立故障诊断模型.通过划分的验证集对所构建的模型进行验证.试验表明,该方法的测试准确性指标显著优于其他方法,至少高于次优方法11.95%的F1得分,能够更好地捕捉传感器数据的故障特征,具有较高的诊断准确率和较强的鲁棒性,且消耗较低、实用价值强,能够有力保障工业互联、玻璃智能制造等领域的数据准确性和安全性.
A Sensor Fault Diagnosis Method Based on EEMD and XGBoost
Sensors play an important role in key fields such as industrial interconnection,and it is crucial to ensure the reliability of their data through fault diagnosis methods.This paper proposes a sen-sor fault diagnosis method based on EEMD and Extreme Gradient Boosting(XGBoost)to improve the accurate identification and timely processing ability of sensor faults.Voltage and current sensor data were collected,and a dataset containing normal and abnormal operating states was established using fault injection.EEMD was utilized for denoising and feature extraction of the data,followed by training with XGBoost to establish the fault diagnosis model.The constructed model was validated using a parti-tioned validation set.Experimental results indicate that the proposed method is significantly better than other methods,at least 11.95%higher than the F1-score of the suboptimal method.It can better capture the fault characteristics of sensor data,has high diagnostic accuracy and strong robustness,low consump-tion,strong practical value,and can effectively ensure the accuracy and security of data in industrial in-terconnection,glass intelligent manufacturing and other fields.

fault diagnosissensorXGBoostfault injectionanti-noiseintegrated empirical mode decomposition

郝志廷、杨星

展开 >

安徽电子信息职业技术学院 机电工程学院,安徽 蚌埠 233040

安徽科技学院 机械工程学院,安徽 凤阳 233100

故障诊断 传感器 极限提升树 故障注入 抗噪 集成经验模态分解

2024

黄山学院学报
黄山学院

黄山学院学报

CHSSCD
影响因子:0.249
ISSN:1672-447X
年,卷(期):2024.26(5)