首页|基于聚类与降维优化的随机森林算法应用研究

基于聚类与降维优化的随机森林算法应用研究

扫码查看
为帮助学生合理规划考研路径,解决考研人数逐年增加而实际录取率却下降的问题,利用机器学习算法对原始成绩数据进行筛选、预处理和归一化.采用K-Means聚类算法以减少输入预测模型的数据量并提高样本的质量.此外,通过应用主成分分析(Principal Component Analysis,PCA)方法进行降维处理,有效减少数据集中的干扰噪声,提高计算效率.同时帮助减少预测模型训练过程中的过拟合现象,实现数据集特征数量的有效减少.最后,采用随机森林(Random Forest,RF)算法得出预测结果,进而开发一种融合K-Means聚类、主成分分析和随机森林算法的综合预测模型.结果表明,该预测模型的准确率能够达到86.5%以上,为学生考研学习提供了较高的参考价值.
This Dissertation Studies the Results of the Postgraduate Entrance Examinations Based on Clustering and Random Forest Hybrid Algorithm
As the number of graduate school entrance examination candidates increases annually and the actual admission rate continues to decline,this study aims to assist students in planning their path for these exams rationally.Initially,the study employs machine learning techniques to select,preprocess,and normalize original academic performance data.Subsequently,the K-means clustering algorithm is ap-plied to reduce the volume of data input into the predictive model and to enhance the quality of the samples.By utilizing Principal Component Analysis(PCA)for dimensionality reduction,the study effec-tively minimizes interference among variables in the dataset,thereby enhancing computational efficiency.Additionally,PCA aids in reducing overfitting in the predictive model during training,achieving a sub-stantial reduction in the number of features in the dataset.Ultimately,the Random Forest(RF)algo-rithm is utilized to generate predictive results.The findings indicate that the accuracy of this predictive model exceeds 86.5%,providing a highly valuable reference for the objective prediction of success or failure in the graduate school entrance examinations.

machine learningK-meansPCARF

张辉、刘皖婷

展开 >

安徽师范大学皖江学院 电子工程系,安徽 芜湖 241000

机器学习 K-Means 主成分分析法 随机森林算法

2024

黄山学院学报
黄山学院

黄山学院学报

CHSSCD
影响因子:0.249
ISSN:1672-447X
年,卷(期):2024.26(5)