首页|基于优化指数的玉米冠层含水量遥感估测

基于优化指数的玉米冠层含水量遥感估测

Remote sensing monitoring of the corn canopy water content based on the optimized index

扫码查看
对北京怀柔县EO-1 Hyperion高光谱数据进行波段筛选和植被含水量指数计算,采用耦合叶片与冠层辐射传输模型对水分指数(WI)、归一化差值水分指数(NDWI)、归一化植被指数(NDVI)、水应力指数(MSI)、归一化差值近红外指数(NDII)和冠层结构(CSI)的玉米冠层含水量估测能力进行分析,在不同理化参数的敏感性分析的基础上,将MCARII和NDWI进行整合,以完成玉米冠层含水量估测.结果表明,ND VI和CSI不能对玉米冠层含水量进行估测,NDII、WI、NDWI、MSI对玉米冠层含水量估测的R2值均大于0.78,但估测的RMSE值均在0.015附近,造成估测结果具有很强的不确定性;优化后的归一化水分指数(M-NDWI)能够有效地排除叶面积指数的干扰,显著改善玉米冠层含水量的估测效果.
The EO-1 Hyperion hyperspectral data of Beijing Huairou county was filtered by band filter and used to calculate the vegetation water content index.Corn canopy water content estimation ability of normalized difference infrared index(NDII),water index(WI),normalized difference water index(NDWI),moisture stress index (MSI),normalized difference vegetation index(NDVI) and canopy structure index(CSI) was analyzed based on the coupling of leaf and canopy radioactive transfer model in this study.On the basis of the sensitivity analysis of different physical and chemical parameters,the two indexes of MCARII and NDWII were integrated to complete the estimation of the corn canopy water content.The results showed that the NDVI and CSI could not to make an estimate of corn canopy water content,and the R2 of corn canopy water content estimation by NDII,WI,NDWI,MSI were greater than 0.78,but the RMSE was 0.015,which led to a strong uncertainty for the estimation.The optimized index M-NDWI can effectively eliminate the interference of LAI,and significantly improve the estimating precision of corn canopy water content.

corncanopy water contenthyperspectral remote sensingvegetation indexHuairou in Beijing

吴见、谭靖、邓凯、徐建辉

展开 >

滁州学院地理信息与旅游学院,安徽滁州239000

安徽省地理信息集成应用协同创新中心,安徽滁州239000

北京航天泰坦科技股份有限公司,北京100083

玉米 冠层含水量 高光谱遥感 植被指数 北京怀柔

北京市科技新星计划安徽省高校自然科学研究重点项目安徽省高校自然科学研究重点项目滁州学院科研项目滁州学院校级科研启动基金

Z131101000413086KJ2015A245KJ2015A2652014PY072012qd18

2015

湖南农业大学学报(自然科学版)
湖南农业大学

湖南农业大学学报(自然科学版)

CSTPCDCSCD北大核心
影响因子:0.868
ISSN:1007-1032
年,卷(期):2015.41(6)
  • 3
  • 15