首页|基于深度卷积神经网络的单向阀泄漏模式识别

基于深度卷积神经网络的单向阀泄漏模式识别

扫码查看
以SV10PB1-30B液控单向阀为研究对象,利用传感器采集 3 种不同泄漏模式下 10 个阀芯的振动信号,设计深度卷积模型,开展不同测点(单向阀的上表面和阀座)、不同信号特征提取方式(原始信号、特征值、特征图)下的模式识别研究.结果表明:基于轴向冲击信号特征值和深度卷积神经网络的模型能有效识别故障类型,验证集上的识别准确率高达 88.293%,是基于特征图的 7.79 倍,是基于原始时域冲击信号的 1.16 倍;训练步数以 100 的较优,同时该模型对正常阀芯和不同损伤阀芯的分类效果明显.
One-way valve leakage pattern recognition based on deep convolution neural network
In SV10PB1-30B hydraulic control check valve,the sensor was used to collect the vibration signals of 10 valve cores in 3 different leakage modes.A deep convolution model and pattern recognition test were performed with different measuring points(upper surface and seat of check valve)and different signal feature extraction methods(original signal,eigenvalue,feature map).The results showed that the fault type could be effectively identified,and the recognition accuracy rate on the verification set was as high as 88.293%with eigenvalues of the axial impact signal and the deep convolutional neural network.The accuracy was 7.79 times based on the feature map and 1.16 times based on the original time domain impact signal.The optimal number of training steps was 100.The model showed optimal classification effects on normal spool and different damaged spool.

check valvedeep convolution neural networkfault diagnosispattern recognition

郭建政、童成彪

展开 >

湖南农业大学机电工程学院,湖南 长沙 410128

智能农机装备湖南省重点实验室,湖南 长沙 410128

单向阀 深度卷积神经网络 故障诊断 模式识别

湖南省重点研发计划湖南省自然科学基金

2022NK20282020JJ4045

2024

湖南农业大学学报(自然科学版)
湖南农业大学

湖南农业大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.868
ISSN:1007-1032
年,卷(期):2024.50(2)
  • 19