首页|基于神经网络和CFD的规整填料塔流体力学计算

基于神经网络和CFD的规整填料塔流体力学计算

扫码查看
提出一种结合计算流体力学(CFD)和BP(Back Propagation)人工神经网络的多尺度计算方法,计算规整填料塔上的流体力学行为.根据最小特征单元实际尺寸建立小尺度三维CFD模型,研究了填料塔单气相和气液两相流体流动分布方式,弥补了在研究塔壁单元和层间转换单元产生压降方面的缺陷.建立了结点网络模型,计算全塔的流体分布等宏观信息.以CFD计算收集到的数据集训练了 2组神经网络模型,分别以结点流量为输入计算干塔压降和持液量.计算结果与相关实验数据比较,干塔压降计算模型的平均相对偏差为8.63%,最大相对偏差为14.02%.持液量计算模型的平均相对偏差约为9.63%,最大相对偏差为13.97%.这表明该训练好的人工神经网络模型具备较好的预测能力,结果较为可信.
Hydrodynamic calculation of structured packing column based on neural network and CFD
A multi-scale calculation method combining computational fluid dynamics(CFD)and back propagation neural network(BPNN)was proposed to calculate the hydrodynamic behavior of structured packing column.According to the actual size of the representative elementary units,a small-scale 3D CFD model was established,and the flow distribution of single gas phase and gas-liquid two-phase fluid in the packing column was studied,which made up for the defects in the pressure drop of the column wall unit and the interlayer conversion unit.A node network model was established to calculate the macroscop-ic information such as the fluid distribution of the whole column.Two neural network models were trained with the data set collected by CFD calculation,and the dry pressure drop and liquid holdup were calcu-lated respectively with the node flow as input neuron.Compared with the relevant experimental data,the average relative deviation of the prediction model for dry pressure drop was 8.63%and the maximum rel-ative deviation was 14.2%.The average relative deviation and maximum relative deviation of the predic-tion model for liquid holdup were 9.63%and 13.97%,respectively.The trained artificial neural network model was proved to be prospective to determinate dry pressure drops and liquid holdup of structured packing columns.

structured packing columnscomputational fluid dynamicback propagation neural networkdry pressure dropsliquid holdup

李邢、曾爱武

展开 >

天津大学化工学院,天津 300072

化学工程联合国家重点实验室,天津 300354

规整填料 计算流体力学 BP神经网络 干塔压降 持液量

2025

化学工业与工程
天津化工学会 天津大学

化学工业与工程

北大核心
影响因子:0.406
ISSN:1004-9533
年,卷(期):2025.42(1)