首页|二态量子系统准确布居动力学的一类新型相空间表示及其与三角窗函数的关系

二态量子系统准确布居动力学的一类新型相空间表示及其与三角窗函数的关系

扫码查看
二态系统是最简单的且无经典对应的量子系统,对二态系统的同构表示的认识和研究能启发研究人员对其动力学与统计行为的更深刻理解.本文使用在[J.Chem.Phys.145,204105(2016);J.Chem.Phys.151,024105(2019);J.Phys.Chem.Lett.12,2496(2021)]等文章中发展的约束相空间严格理论、非协变相空间函数、含时权重函数与含时归一化因子来构建一类新型量子相空间表示.这类同构表示可以导出二态量子系统布居动力学的准确结果.约束相空间上的轨迹运动方程同构于含时薛定谔方程.每条相空间轨迹对于布居动力学所对应积分表达式的贡献严格半正定.进一步证明了在[J.Chem.Phys.145,144108(2016)]这篇文章中根据经验提出的三角窗函数方法在本质上可以对应于本文的这类新型相空间表示的一个特殊情况,因此同样是二态量子系统准确布居动力学的同构表示.
A Novel Class of Phase Space Representations for the Exact Population Dy-namics of Two-State Quantum Systems and the Relation to Triangle Window Functions
Isomorphism of the two-state system is heuristic in un-derstanding the dynamical or statistical behavior of the simplest yet most quantum system that has no classical counterpart.We use the constraint phase space devel-oped in J.Chem.Phys.145,204105(2016);151,024105(2019);J.Phys.Chem.Lett.12,2496(2021),non-co-variant phase space functions,time-dependent weight functions,and time-dependent normalization factors to construct a novel class of phase space representations of the exact population dynamics of the two-state quan-tum system.The equations of motion of the trajectory on constraint phase space are isomorphic to the time-de-pendent Schrödinger equation.The contribution of each trajectory to the integral expression for the population dynamics is always positive semi-defi-nite.We also prove that the triangle window function approach,albeit proposed as a heuris-tic empirical model in J.Chem.Phys.145,144108(2016),is related to a special case of the novel class and leads to an isomorphic representation of the exact population dynamics of the two-state quantum system.

Phase space formulation of quantum mechanicsTwo-state systemWindow functionsConstraint phase spaceFinite-state quantum systemAbel equationPopulation dynamicsTime correlation functionsSymmetrical quasi-classicalNonadiabatic dynamics

程祥松、贺鑫、刘剑

展开 >

北京大学化学与分子工程学院,北京分子科学国家研究中心,理论与计算化学研究所,北京 100871

相空间表示 约束相空间 有限态量子系统 二态系统 布居动力学

National Science Fund for Distinguished Young ScholarsHigh-Performance Computing Platform of Peking University,Beijing PARATERA Tech Co.,LtdGuangzhou Supercomputer Center

22225304

2024

化学物理学报(英文版)
中国物理学会

化学物理学报(英文版)

CSTPCDEI
影响因子:0.162
ISSN:1674-0068
年,卷(期):2024.37(2)
  • 58