首页|基于近红外光谱的小麦麸皮功能性成分模型构建

基于近红外光谱的小麦麸皮功能性成分模型构建

扫码查看
为实现小麦麸皮功能性成分的无损、快速检测,利用近红外光谱技术(NIR)结合偏最小二乘法(PLS),比较不同预处理方法、不同建模波段及主因子数对建模结果的影响,筛选出最佳建模条件。其中,水分、灰分、脂肪的检测模型的预处理方法为S-G导数(Savitzky-Golay),波段分别为2020 nm~2230 nm、1000 nm~2500 nm、1000 nm~2500 nm,主因子数分别为11、7、6时,模型最优;蛋白质的检测模型的预处理方法为多元散射校正(MSC),波段为1860 nm~2020 nm,主因子数为6时,模型最优;膳食纤维的检测模型的预处理方法为S-G平滑,波段为1100 nm~1350 nm,主因子数为8时,模型最优。最优条件下模型的校正模型相关系数(RC)、交互验证集相关系数(RP)均大于0。85,校正集标准差(SEC)、交互检验验证标准差(SECV)、预测集标准差(SEP)均小于其他条件下的数值,且三个值相互接近,满足最佳建模原则。使用未参与建模的预测集样品对最佳模型进行验证,得出结果为预测值与真实值(国标方法测定值)的绝对偏差均小于5%,说明该模型可用于小麦麸皮5种功能性成分的检测。
Modeling of functional components of wheat bran based on near-infrared spectroscopy
In order to realize the non-destructive and rapid detection of the functional components of wheat bran,using Near infrared spectruminstrument(NIR)combined with Partial least squares regression(PLS),comparing the effects of different pre-processing method,different spectral range and number of principal factors on the modeling results,and screening out the best modeling condi-tions.When the pre-processing method for the detection model of moisture,ash,and fat was S-G derivative(Savitzky-Golay),the spectral range were 2020 nm~2230 nm,1000 nm~2500 nm,and 1000 nm~2500 nm,and the number of principal factors were 11,7,and 6,the model had the best performance.When the pre-processing method was Multiple scattering correction(MSC),the spec-tral range was 1860 nm~2020 nm,and the number of principal factors was 6,the detection model of protien had the best perform-ance.When the pre-processing method was S-G smoothing,the spectral range was 1100 nm~1350 nm,and the number of principal factors was 8,the detection model of dietary fiber had the best performance.The Correlation coefficient(RC)and Correlation coeffi-cientsof prediction(RP)were above 0.85,Standard error of cross validation(SEC V)and Standard error of prediction set(SEP)were lower than other conditions,the three values are close to each other on the best modeling conditions,satisfying optimal modeling principles.Validation of the best model using samples from the prediction set that were not involved in the modeling yielded the re-sults that the absolute deviations of the predicted values from the true values(measured by the national standard method)were all less than 5%,indicating that the model can be used for the detection of the five functional constituents of wheat bran.

near infrared spectroscopy(NIR)wheat branfunctional compositionmodeling

杨佳欣、阿依古丽·塔什波拉提、田合、严欢

展开 >

新疆维吾尔自治区科技资源共享服务中心 新疆特色功能食品营养与安全检测重点实验室,新疆 乌鲁木齐 830011

近红外光谱技术 小麦麸皮 功能性成分 模型构建

2025

化学研究与应用
四川省化学化工学会 四川大学

化学研究与应用

北大核心
影响因子:0.555
ISSN:1004-1656
年,卷(期):2025.37(1)