首页|基于ConvLSTM网络的北极海冰时空序列预测研究

基于ConvLSTM网络的北极海冰时空序列预测研究

扫码查看
为了开辟北极航运路线、支持极地科学研究和资源开发,准确预测海冰密集度(SIC)显得尤为关键.在海洋预报领域,统计预报发挥着重要作用.文章引入了一种级联式的卷积长短时记忆神经网络(ConvLSTM)用于北极SIC的中、短期预测.该网络具备图像处理和时空预测的能力,可用于对海冰时空序列进行精确的预报.它能够处理不同长度的输入序列,在各种数据情境下展现出强大的预测潜力.通过对网络架构进行优化,该架构取得了更强的性能,能够更准确地捕捉和分析SIC的动态变化.实验结果表明,该模型在7 天预报中的均方根误差为0.0599,相关系数高达 95.42%.
Research on Arctic sea ice spatiotemporal sequence prediction based on convolutional long short term memory network
Accurate prediction of sea ice concentration(SIC)is particularly crucial for opening Arctic shipping routes,supporting polar scientific research and resource development.In the field of ocean forecasting,statistical forecasting plays a vital role.This study introduces a cascaded Convolutional Long Short-Term Memory neural network(ConvLSTM)for medium-and short-term prediction of Arctic Sea ice concentration.This network has the ability of image processing and spatiotemporal prediction,which can accurately predict the spatiotemporal sequences of sea ice.It can handle input sequences of different lengths and demonstrates strong predictive potential in various data contexts.By optimizing the network architecture,it achieves stronger performance,accurately capturing and analyzing dynamic changes in SIC.Experimental results show that this model achieves a root mean square error of 0.0599 and a correlation coefficient of 95.42%in a 7-day forecast.

Arctic sea iceartificial intelligenceneural networksConvLSTMsea ice concentration

夏成龙

展开 >

海军研究院,天津 300061

北极海冰 人工智能 神经网络 卷积长短期记忆网络 海冰密集度

2024

海洋测绘
海军海洋测绘研究所

海洋测绘

CSTPCD北大核心
影响因子:0.669
ISSN:1671-3044
年,卷(期):2024.44(4)
  • 2