首页|融合残差模块与SegNet的多波束影像人工鱼礁检测

融合残差模块与SegNet的多波束影像人工鱼礁检测

扫码查看
针对如何从多波束声纳影像中自动、准确地提取人工鱼礁区域的问题,给出一种融合残差模块与SegNet的多波束声纳影像人工鱼礁检测方法.在该方法中,残差模块用于优化训练网络参数,防止网络训练出现"梯度弥散"和"梯度爆炸"问题;SegNet架构具有网络编码阶段与解码阶段结构对称优势,可实现网络输入影像与输出分类结果的等尺度对称.该方法通过融合残差模块优化训练网络参数与SegNet架构结构对称优势,实现多波束声纳影像中人工鱼礁检测.通过对不同类型的多波束人工鱼礁影像测试验证,该方法可获得86.85%F1-socre和76.75%IoU的检测结果,准确地检测出多波束声纳影像中人工鱼礁区域.
Artificial reef detection method for multi-beam sonar imagery by combining residual module with SegNet
With respect to how to automatically and accurately extract artificial reef areas from multi-beam sonar images,an artificial reef detection method for multi-beam sonar images by combining residual module with SegNet is proposed in this paper.The residual module can optimize the training network parameters to prevent the gradient dispersion and explosion in network training.The SegNet framework has the advantage of symmetry in the structure of the network encoding stage and decoding stage,and can achieve proportional symmetry between the network input image and output classification result.In this paper,the artificial reef detection in multi-beam sonar images is realized by integrating the residual module optimization network parameters and the symmetrical advantage of the SegNet structure.By testing different types of multi-beam artificial reef images,the proposed method can obtain 86.85%F1-socre and 76.75%IOU detection results,and accurately detect the artificial reef areas in the images.

multi-beam sonar imagesartificial reef detectionconvolutional neural networksresidual modulemarine ranching

冯义楷、董志鹏、刘焱雄、杨龙、王艳丽

展开 >

自然资源部第一海洋研究所,山东 青岛 266061

空天地海一体化大数据应用技术国家工程实验室,陕西 西安 710072

山东科技大学 测绘与空间信息学院,山东 青岛 266590

多波束声纳影像 人工鱼礁检测 卷积神经网络 残差模块 海洋牧场

2024

海洋测绘
海军海洋测绘研究所

海洋测绘

CSTPCD北大核心
影响因子:0.669
ISSN:1671-3044
年,卷(期):2024.44(5)