首页|小样本深度学习在遥感影像目标检测中的应用

小样本深度学习在遥感影像目标检测中的应用

扫码查看
深度学习目标检测模型构建通常需要大规模的训练样本集,而遥感影像目标检测中通常由于标注样本有限难以满足神经网络的训练需求.小样本学习(FSL)方法是在训练样本稀缺的条件下构建深度学习模型的一种有效方法,在自然影像小样本目标检测(FSOD)中应用较为广泛,但是针对遥感影像的小样本目标检测方法较少.针对自然影像数据集的小目标检测方法,系统总结了度量学习、元学习、迁移学习和数据增强四类 FSOD 方法的原理及优缺点,进而重点围绕遥感影像 FSOD 方法研究现状,提出遥感影像 FSOD 的发展方向是建立公认的评定指标、三维目标检测和多元特征融合.
A survey of few-shot object detection and its application in remote sensing image interpretation
The effective construction of deep learning object detection model usually relies on large-scale training sample sets,but the limited labeled samples in remote sensing image interpretation are often difficult to meet the training needs of neural networks.Few-shot learning(FSL)is an effective method for building a deep learning model under the condition that training samples are scarce.Few-shot object detection(FSOD)methods are widely used for natural images,but lacking for remote sensing images at present.The principle,advantages and disadvantages of FSOD method for natural image is summarized from four aspects:metric learning,meta-learning,transfer learning and data enhancement.Then,the research status of FSOD in remote sensing images is described,and three trends of FSOD in remote sensing images are proposed:the establishment of recognized evaluation indicators,three-dimensional object detection,and multiple feature fusion.

remote sensing image interpretationobject detectionfew-shot learningdeep learningmeta-learningtransfer learning

熊雄、范瑾煜、张欣悦、桂容

展开 >

海军研究院,天津 300061

中南大学 地球科学与信息物理学院,湖南 长沙 410083

遥感影像解译 目标检测 小样本学习 深度学习 元学习 迁移学习

2024

海洋测绘
海军海洋测绘研究所

海洋测绘

CSTPCD北大核心
影响因子:0.669
ISSN:1671-3044
年,卷(期):2024.44(5)