首页|多尺度PCA-HOG优化注意力机制的光学和SAR影像匹配

多尺度PCA-HOG优化注意力机制的光学和SAR影像匹配

扫码查看
针对光学与SAR影像存在非线性辐射差异与强噪声干扰导致影像匹配精度低问题,文中提出PCA增强多尺度HOG特征与注意力机制结合的遥感影像匹配方法.为了克服影像间存在的非线性辐射差异影响,采用方向梯度直方图构建影像结构特征;同时为了避免影像强噪声干扰,通过主成分分析算法对多尺度方向梯度直方图的局部梯度方向进行增强,保证噪声干扰下准确提取影像结构特征;对特征点的空间位置及上下文信息通过注意力机制图神经网络进行聚合,再求解聚合后特征向量的最优分配矩阵,并基于阈值确定匹配点.利用 3 组光学和SAR影像进行实验,结果表明,该方法获得正确匹配点数量最多、匹配正确率最高、匹配点均方根误差最小,匹配耗时降低.
Multi scale PCA-HOG optimized attention mechanism for optical and SAR image matching
For the problem of low image matching accuracy caused by nonlinear radiation differences and strong noise interference in optical and SAR images,this paper proposes a remote sensing image matching method that combines PCA enhanced multi-scale HOG features with attention mechanism.In order to overcome the nonlinear grayscale distortion between images,directional gradient histograms are used to construct image structural features.To avoid strong noise interference in the image,principal component analysis algorithm is used to enhance the local gradient direction of the multi-scale directional gradient histogram,ensuring accurate extraction of image structural features under noise interference Besides,we aggregated the spatial position and contextual information of feature points through an attention mechanism graph neural network,then solved the optimal allocation matrix of the aggregated feature vectors,and determined matching points based on thresholds.Experiments were conducted using four sets of optical and SAR images,and the results showed that this method achieved the highest number of correct matching points,the highest matching accuracy,the smallest root mean square error of matching points,and reduced matching time.

nonlinear radiation differencephase consistencyprincipal component analysisdirectional gradient histogramattention mechanism

曹海春

展开 >

山西工程职业学院 计算机工程系,山西 太原 030031

非线性辐射差异 相位一致性 主成分分析 方向梯度直方图 注意力机制

2024

海洋测绘
海军海洋测绘研究所

海洋测绘

CSTPCD北大核心
影响因子:0.669
ISSN:1671-3044
年,卷(期):2024.44(6)