首页|基于深度学习的化工新闻文本分类方法

基于深度学习的化工新闻文本分类方法

扫码查看
近年来鉴于化工新闻文本的数量增多,化工从业者想要获得高质量的化工新闻文本信息变得越来越困难,而文本分类技术可以帮助化工从业者更轻松地找到自己所需的信息.提出了BERT-ATTCNN(BERT-Attention-TextCNN)模型,它将BERT和TextCNN模型融合并结合Attention机制进行化工新闻文本分类,该模型可以同时学习文本信息的语义表示和特征提取,从而实现更加准确的分类任务.通过实验验证,BERT-ATTCNN模型在化工新闻分类任务中表现优秀,准确率达到97.65%的,具有更高的分类准确率和更好的泛化能力.因此,BERT-ATTCNN模型可以为化工新闻分类等自然语言处理任务提供有效的解决方案.
Research on Chemical News Text Classification Method Based on BERT-ATTCNN Model
In recent years,due to the increase in the number of chemical news texts,it has become in-creasingly difficult for chemical practitioners to obtain high-quality chemical news text information,and text classification technology can help chemical practitioners find the information they need more easi-ly.This paper proposes the BERT-ATTCNN(BERT-Attention-TextCNN)model,which combines the BERT and TextCNN models and combines the Attention mechanism for chemical news text classifica-tion.This model can learn the semantic representation and feature extraction of text information at the same time,so as to achieve more accuracy classification tasks.Through experimental verification,the BERT-ATTCNN model performed well in the chemical news classification task,achieving an accuracy rate of 97.65%,with higher classification accuracy and better generalization ability.Therefore,the BERT-ATTCNN model can provide an effective solution for natural language processing tasks such as chemical news classification.

text classificationnatural language processingBERTAttention mechanismTextCNN

宗慧、魏鹏

展开 >

淮阴工学院 计算机与软件工程学院,江苏 淮安 223003

文本分类 自然语言处理 BERT 注意力机制 TextCNN

江苏省产学研项目国家统计局科技项目

BY20203692018LY12

2024

淮阴工学院学报
淮阴工学院

淮阴工学院学报

影响因子:0.255
ISSN:1009-7961
年,卷(期):2024.33(2)
  • 16