首页|基于注意力机制的RV减速器故障诊断

基于注意力机制的RV减速器故障诊断

扫码查看
传统的利用深度学习对RV减速器进行故障检测的方法主要依赖于人工定义的特征提取和各种分类器,但其局限性在于无法捕获复杂的故障模式和变化,并且对于不同的故障类型需要重新提取特征导致模型泛化能力差.为了解决这个问题,引入注意力机制来自适应地对输入数据中的关键信息进行加权和聚焦,通过自适应地学习关键信息,提高故障检测的准确性和泛化能力.研究将注意力机制分别结合卷积神经网络(CNN)和长短期记忆网络(LSTM)构建模型,对收集到的RV减速器摆线轮振动信号进行检测识别,旨在增强减速器故障的检测性能.通过对测试集上的准确率进行比较,结果显示采用注意力机制的模型显著提高了网络的准确率.说明注意力机制能够有效地提取RV减速器摆线轮故障部位的特征,从而对减速器的故障进行更准确的检测.
Fault Diagnosis of RV Gearboxes Based on Attention Mechanism
Traditional approaches to fault detection in RV reducers using deep learning heavily rely on manually defined feature extraction and various classifiers.However,these methods have limitations in capturing complex fault patterns and variations,and they exhibit poor generalization when dealing with different fault types that require re-extraction of features.To address this issue,this study propos-es the integration of attention mechanisms to adaptively weight and focus on key information in the in-put data,improving fault detection accuracy and generalization.Specifically,attention mechanisms are in-corporated into both convolutional neural network(CNN)and long short-term memory(LSTM)models to detect and identify vibrations in the helical gears of RV reducers based on collected signal data,aiming to enhance fault detection performance.Comparative tests on the accuracy of the models on a test dataset demonstrate that the attention mechanism significantly improves the accuracy of the net-work.This indicates that attention mechanisms can effectively extract features related to faults in the helical gears of RV reducers,enabling more accurate fault detection.

attention mechanismCNNLSTMRV reducersfeature extraction

熊元昊、汪晶晶、王龙、闫淑萍、俞春兰、王风涛

展开 >

安徽工程大学机械工程学院,安徽芜湖 241000

浙江五洲新春集团股份有限公司,浙江绍兴 312000

注意力机制 CNN LSTM RV减速器 故障检测

2024

淮阴工学院学报
淮阴工学院

淮阴工学院学报

影响因子:0.255
ISSN:1009-7961
年,卷(期):2024.33(5)