首页|基于随机森林分类的有害藻华种预测与影响因素分析

基于随机森林分类的有害藻华种预测与影响因素分析

扫码查看
全球变化下浮游植物有害藻华事件频发,给渔业、水产养殖业、人类健康和社会经济带来一系列问题.本研究利用机器学习的随机森林分类树算法,选取北黄海獐子岛海域常见有害藻华种,分别构建了贝毒种和鱼灾种两类有害藻华种预测模型.贝毒种模型响应变量以塔玛亚历山大藻(Alexandrium tamarense)、鳍藻(Dinophysis)、膝沟藻(Gonyaulax)、原甲藻(Prorocentrum)和拟菱形藻(Pseudo-nitzschia)细胞丰度数据为基础构建,鱼灾种模型基于米氏凯伦藻(Karenia mikimotoi)、夜光藻(Nocti-luca scintillans)和小等刺硅鞭藻(Dictyocha fibula),两个模型的特征变量皆选取透明度、温度、盐度、pH和溶解氧5个环境参数.模型分类性能显示:贝毒种模型和鱼灾种模型的准确度分别达到了87.9%和89.7%,对有害藻华种的预测精度皆达到了 80%以上水平.影响因素重要性分析表明:温度和溶解氧的平均基尼系数下降分别为15.4%和14.3%,是贝毒种模型有害藻华种的主要影响因素;pH和盐度的平均基尼系数递减程度分别为21.6%和15.5%,是鱼灾种的主要影响因素.本研究为渔业水域、养殖水域以及重要栖息地有害藻华关键预测因子甄别以及早期预警监测体系的建立,提供了案例分析与工作基础.
Prediction and influencing factor analysis of harmful algal bloom species with random forest classification
Harmful algal blooms are frequently caused in the context of global change by phytoplank-ton,which lead to a series of problems with respect to fisheries,aquacultures,human health and social economy.By utilizing the random forest classification method of machine learning,in this study,we developed two models of shellfish toxic and fish kill basing on the common harmful algal bloom species around the waters of Zhangzi Island in the northern Yellow Sea.The response variable of shellfish toxic model was designated by the cell abundances of Alexandrium tamarense,Dinophysis spp.,Gonyaul-ax spp.,Prorocentrum spp.and Pseudo-nitzschia spp.whilst that of the fish kill model was setup by the Karenia mikimotoi,Noctiluca scintillans and Dictyocha fibula.The feature variables for the two models were transparency,temperature,salinity,pH value and dissolved oxygen.The classification performance showed that the accuracy of the shellfish toxic and fish kill models were 87.9%and 89.7%,respectively,while the precision all reached up to over 80%.The analysis of the feature im-portance indicated that temperature and dissolved oxygen were the key predictive variables for shellfish toxic model with MeanDecreaseGini being 15.4%and 14.3%,respectively,while pH value and salini-ty were the key variables for fish kill model with that values of 21.6%and 15.5%,respectively.Our findings could provide case study and basic information on discriminating key predictive variables for the harmful algal bloom species and establishing the early monitoring and warning system in the waters of fisheries,aquaculture and crucial habitats.

phytoplanktonharmful algal bloompredictionrandom forest

栾青杉、孙坚强

展开 >

中国水产科学研究院黄海水产研究所,农业农村部海洋渔业可持续发展重点实验室,山东青岛 266071

青岛海洋科技中心,海洋渔业科学与食物产出过程功能实验室,山东青岛 266237

山东长岛近海渔业资源国家野外科学观测研究站,山东烟台 265800

浮游植物 有害藻华 预测 随机森林

2024

海洋湖沼通报
山东海洋湖沼学会

海洋湖沼通报

CSTPCD北大核心
影响因子:0.464
ISSN:1003-6482
年,卷(期):2024.46(6)