首页|深度学习在海洋遥感及渔业中的研究进展

深度学习在海洋遥感及渔业中的研究进展

Research progresses in deep learning of ocean remote sensing and fishery

扫码查看
近40年来,随着空间技术和传感器技术的不断发展,海洋遥感及渔业已进入大数据时代.准确、高效、智能地挖掘这些海洋遥感及渔业数据中的有用信息是需要解决的挑战性问题.深度学习作为近年来机器学习领域新兴的一项强大技术,在许多工业领域的应用中取得了较好的成果,与传统的基于物理或统计的图像信息提取算法相比,其优势更加明显,并开始在海洋遥感及渔业中展开应用.在本研究中,我们介绍了人工智能的关键理论与方法,在海洋遥感和渔业方向总结了深度学习在海洋环境参数反演、遥感图像的分类识别、海洋现象预测、种群识别、渔业生物学和渔情预报方面的研究进展,并对未来深度学习在海洋遥感和渔业的发展进行展望.
In the past 40 years,with the continuous development of space technology and sensor tech-nology,ocean remote sensing and fishery have entered the era of big data.Accurate,efficient,and in-telligent mining of useful information in these ocean remote sensing and fishery data is a challenging problem that needs to be solved.As a powerful technology emerging in the field of machine learning in recent years,deep learning has achieved good results in many industrial applications.Compared with traditional image information extraction algorithms based on physics or statistics,its advantages are more obvious.As the beginning to expand the application in ocean remote sensing and fishery,in this study,we introduced the key theories and methods of artificial intelligence into ocean remote sensing and fishery.In the direction of ocean remote sensing and fishery,we summarized the use of deep learn-ing in marine environmental parameter inversion,remote sensing image classification and identification,marine phenomenon prediction,population identification,fishery biology and research progresses in fishery forecasts,and prospects for the future development of deep learning in ocean remote sensing and fishery.

ocean remote sensingbig datafisherydeep learning

解明阳、陈新军、柳彬

展开 >

上海海洋大学海洋生物资源与管理学院,上海 201306

农业农村部大洋渔业可持续利用重点实验室,上海 201306

上海海洋大学国家远洋渔业工程技术研究中心,上海 201306

上海海洋大学大洋渔业资源可持续开发省部共建教育部重点实验室,上海 201306

上海海洋大学海洋科学与生态环境学院,上海 201306

展开 >

海洋遥感 大数据 渔业 深度学习

2024

海洋湖沼通报
山东海洋湖沼学会

海洋湖沼通报

CSTPCD北大核心
影响因子:0.464
ISSN:1003-6482
年,卷(期):2024.46(6)