首页|基于改进YOLOv5s算法的禁捕期长江渔船识别及应用研究

基于改进YOLOv5s算法的禁捕期长江渔船识别及应用研究

扫码查看
长江实行十年禁渔是长江生态环境修复的关键环节,针对禁渔期间长江非法捕捞渔船目标小、背景复杂、流动大等问题,提出了一种基于改进YOLOv5s的目标检测算法.该算法优化多尺度自适应锚框模块,采用改进的K-means++聚类算法,重新匹配适合长江船舶尺寸的锚框;使用轻量高效的坐标注意力(coordinate attention,CA)机制,提升模型关注目标通道信息特征的能力;采用SPPCSPPC(spatial pyramid pooling and context-aware spatial pyramid pooling combination)对特征图进行池化,提高小目标检测能力;通过构建长江船舶数据集训练得到最优权值模型.结果显示,改进后的模型在准确率、召回率、mAPO.5、mAPO.5∶0.9和原模型相比分别提高了 1.5%、3.0%、2.4%、7.7%,且训练过程损失收敛更快,收敛值更低,能够准确快速识别出长江上的渔船目标.研究结果可为长江十年禁渔提供技术支持.
Research and application of Yangtze River fishing boat identification during fishing ban based on improved YOLOv5s algorithm
The Ten-year Fishing Ban of the Yangtze River is a critical component of the river's ecological restoration efforts.To address challenges such as small target sizes,complex backgrounds,and high mobility of illegal fishing vessels during the ban,an improved target detection algorithm based on YOLOv5s has been developed.This enhanced algorithm optimizes a multi-scale adaptive anchor module and substitutes the original K-means clustering algorithm with an advanced K-means++clustering algorithm,redefining the clustering to match the specific dimensions of the Yangtze River vessels.At the output end of the backbone network,a lightweight and efficient coordinate attention(CA)mechanism is introduced,reducing background noise interference and focusing on identifying key features of vessels,which diminishes computational and parameter requirements,thereby boosting detection efficiency.The algorithm utilizes an enhanced spatial pyramid pooling and context-aware spatial pyramid pooling combination(SPPCSPPC)module for pooling feature maps,which enriches the target detection network's ability to perceive and express multi-scale features,notably improving the detection capability for small-scale targets.Yangtze River vessel image data is collected and enhanced to construct a dedicated dataset for training to derive an optimal weight model.The final improved model has exhibited increases in accuracy,recall,mAPO.5,and mAPO.5∶0.95 by 1.5%,3.0%,2.4%,and 7.7%.The improved model also demonstrates a faster loss convergence during training,resulting in a lower final loss value.It surpasses other lightweight models and proves that the enhancements have effectively increased target detection accuracy while it also ensures efficiency.This makes it suitable for real-time detection requirements for the Yangtze River fishing vessels,providing technological support for the Ten-year Fishing Ban of the Yangtze River.

object detectionYOLOv5sclustering algorithmattention mechanismspatial pyramid pooling

崔秀芳、王认认、林浩涛、夏霖波、韩沛霖

展开 >

上海海洋大学工程学院,上海 201306

目标检测 YOLOv5s 聚类算法 注意力机制 空间金字塔池化

农业农村部渔业船舶检验局渔船船用产品安全性能监督抽查评估项目

D8005170116

2024

海洋渔业
中国水产学会 中国水产科学研究院东海水产研究所

海洋渔业

CSTPCD北大核心
影响因子:1.063
ISSN:1004-2490
年,卷(期):2024.46(3)