首页|基于YOLOv5s的筐装禽蛋上料机器人视觉定位方法

基于YOLOv5s的筐装禽蛋上料机器人视觉定位方法

扫码查看
针对国内禽蛋制品加工过程中,散装蛋水中上料时筐装蛋搬运自动化程度低的问题,设计一种自动上料机器人的视觉定位方案.该方案采用YOLOv5s和图像处理相结合的方法,在复杂环境中对散装禽蛋筐进行定位识别.建立最佳分割阈值T与图像平均灰度值M之间的关系模型,使用动态阈值分割法对图像中的堆垛整体进行分割,通过堆垛最小外接矩形的长宽比区分2种筐装禽蛋堆垛类型,堆垛类型识别准确率为100%.使用YOLOv5s对堆垛顶层的单个蛋筐进行定位识别,模型识别精确率为98.48%,检测单幅图片用时为0.005 4 s.根据YOLOv5s输出的定位结果对图片进行裁剪,通过图像分割将蛋筐边框分割出来并用Canny算子检测其边缘信息,计算所有蛋筐旋转角度,平均角度误差为0.41°.结合蛋筐高度得出筐装禽蛋堆垛中所有蛋筐的位姿信息.结果表明,基于YOLOv5s和图像处理的筐装禽蛋定位方法可以准确识别出筐装禽蛋堆垛中所有蛋筐的位姿信息,该系统具有较好的鲁棒性和可行性.
A method for visually positioning loading robot of basket-packed poultry eggs based on YOLOv5s
A visual positioning scheme for an automatic water-based loading robot was designed to solve the problem of low automation in the water-based loading process for basket-packed eggs during the processing of poultry and egg products in China.This scheme combined YOLOv5s with methods of image processing to locate and recognize basket-packed eggs in complex environments.A relationship model be-tween the optimal segmentation threshold T and the average grayscale value M of the image was estab-lished.The dynamic threshold segmentation method was used to segment the entire stack of eggs in the im-age.The two types of basket-packed egg stacks were distinguished based on the aspect ratio of the mini-mum bounding rectangle of the stack,with the recognition accuracy of the stack type of 100%.YOLOv5s was used to locate and identify the top egg baskets of the stack,with the recognition accuracy of the model of 98.48%and the time required to detect a single image of 0.005 4 s.The image was cropped based on the results of positioning output by YOLOv5s.The rotation angles of all egg baskets were calculated by using image segmentation to segment the bounding border of the egg baskets and detecting their edge information with the Canny operators,with an average angle error of 0.41°.The pose information of all the egg baskets in the basket-packed egg stack was obtained based on the height of the egg baskets.It is indicated that the method of positioning basket-packed eggs based on YOLOv5s and image processing can accurately identify the pose information of all egg baskets in the stack.This scheme has good robustness and feasibility,and can provide visual system technology support for the automatic loading robot of basket-packed poultry eggs.

basket-packed poultry eggsimage processingYOLOv5svisual positioningwater-based loading process

雷杏子、王树才、龚东军、涂本帅、何昱廷、李传珍

展开 >

华中农业大学工学院,武汉 430070

农业农村部长江中下游农业装备重点实验室,武汉 430070

武汉软件工程职业学院(武汉开放大学),武汉 430205

筐装禽蛋 图像处理 YOLOv5s 视觉定位 水中上料

武汉市市属高等学校产学研项目华中农业大学自主科技创新基金

CXY20200162662020GXPY005

2024

华中农业大学学报
华中农业大学

华中农业大学学报

CSTPCD北大核心
影响因子:1.09
ISSN:1000-2421
年,卷(期):2024.43(3)
  • 23