首页|基于YOLOv5s和超声图像的儿童肠套叠特征检测模型

基于YOLOv5s和超声图像的儿童肠套叠特征检测模型

扫码查看
为帮助医生快速寻找到儿童腹部超声中肠套叠的病变特征并实现肠套叠超声诊后数据的快速质检,文章将目标检测算法应用于儿童腹部超声图像检测肠套叠"同心圆"征.首先探索了基于 YOLOv5s 的儿童肠套叠检测模型,发现该模型检测肠套叠"同心圆"征的精确度、召回率、F1 分数、mAP@0.5、FPS以及参数量等方面均优于 Faster RCNN.进一步,为解决肉眼难以观察的"同心圆"征的检测问题,使用双向特征金字塔网络,并将注意力机制加入 YOLOv5s网络,形成基于 YOLOv5s_BiFPN_SE框架的儿童肠套叠"同心圆"征检测模型.该模型检测的精确率、召回率、F1 分数、mAP@0.5 分别达到了 91.33%、90.73%、91.03%、88.77%,性能更优于 YOLOv5s.
Child Intussusception Feature Detection Model Based on YOLOv5s and Ultrasound Images
For the purpose of helping doctors to quickly identify the lesions of intussusception in children's abdominal ultrasound and achieving the rapid quality inspection of ultrasound diagnosis data,this paper applied the target detection algorithm to detect the"concentric circle"feature of intussusception in children's abdominal ultrasound images.Firstly,a YOLOv5s based detection model for pediatric intussusception was explored,which had the improved precision,recall,F1 score,mAP@0.5,FPS,and parameter quantity compared to Faster RCNN.Furthermore,a bidirectional feature pyramid network was used to solve the detection problem of the"concentric circle"which was difficult to observed by naked eyes.The attention mechanism was added into the YOLOv5s network to form a detection model based on YOLOv5s_BiFPN_SE framework.The accuracy,recall,F1 score,mAP@0.5 could reach 91.33%,90.73%,91.03%,and 88.77%respectively,which represented better performance than YOLOv5s.

object detectionintussusceptionultrasound images"concentric circle"signthe bidirectional feature pyramid networkattention mechanism

陈星、俞凯、袁贞明、黄坚、李哲明

展开 >

杭州师范大学信息科学与技术学院,浙江 杭州 311121

杭州和乐科技有限公司,浙江 杭州 311121

浙江大学医学院附属儿童医院数据信息部,浙江 杭州 310051

浙江-芬兰儿童健康人工智能联合实验室,浙江 杭州 310051

国家儿童健康与疾病临床医学研究中心 AI实验室,浙江 杭州 310051

展开 >

目标检测 肠套叠 超声图像 "同心圆"征 双向特征金字塔网络 注意力机制

国家重点研发计划项目国家自然科学基金面上项目浙江省医药卫生科技计划项目

2019YFE0126200620762182019ZH004

2024

杭州师范大学学报(自然科学版)
杭州师范大学

杭州师范大学学报(自然科学版)

CSTPCD
影响因子:0.386
ISSN:1674-232X
年,卷(期):2024.23(1)
  • 3