首页|基于多时相Sentinel-2卫星影像的冬小麦面积提取

基于多时相Sentinel-2卫星影像的冬小麦面积提取

扫码查看
及时准确地提取冬小麦种植信息,对开展冬小麦农情遥感监测具有重要的意义.以杭州市余杭区冬小麦越冬期(2021-12-04)、扬花期(2022-04-08)和乳熟期(2022-05-03)Sentinel-2 遥感影像为数据源,分别采用最大似然法、支持向量机、归一化差值植被指数(normalized difference vegetation index,NDVI)相加和相减合成运算提取冬小麦种植面积.结合冬小麦地面调查数据与实测种植面积,对不同方法的提取结果进行精度评价.结果显示,利用越冬期影像 NDVI阈值将常绿植被区(茶园、林地)掩膜处理,对非常绿植被区(建筑、水体、冬小麦)扬花期与乳熟期影像 NDVI值进行和值运算,是提取余杭区冬小麦种植面积的最佳方法,面积精度为 91.96%,说明基于多时相遥感影像结合植被物候特征与典型地物类型,能够实现冬小麦种植面积的高精度提取.
Area Extraction of Winter Wheat Based on Multi-temporal Sentinel-2 Satellite Images
Timely and accurate extraction of winter wheat planting information is of great research significance for remote sensing monitoring of winter wheat growth.In this study,the Sentinel-2 satellite remote sensing images of winter wheat during overwintering stage(2021-12-04),flowering stage(2022-04-08)and milk ripening stage(2022-05-03)in Yuhang District were used as data sources.The winter wheat planting area was extracted by the maximum likelihood classification,support vector machine,normalized difference vegetation index(NDVI)addition and subtraction synthetic operation methods,respectively.Combining the field survey data with the measured planting area of winter wheat,the accuracy of the results extracted by different classification methods were evaluated.The results showed that using threshold value of NDVI during overwintering stage to mask evergreen vegetation areas(tea garden,woodland)and performing addition operations on the NDVI values of non-evergreen vegetation areas(buildings,water bodies,winter wheat)during flowering and milk ripening stages was the optimum method for extracting the planting area of winter wheat in Yuhang District,with an area accuracy of 91.96%.The results indicated that multi-temporal remote sensing images combined with the phenological characteristics of vegetation and typical land types could obtain high-precision planting area extraction of winter wheat.

winter wheatSentinel-2 satellitemulti-temporal remote sensing imagevegetation classificationplanting area extraction

陈雨琪、席瑞、陈佳麒、章健、高国军、刘海威、盛莉、王福民、刘占宇

展开 >

杭州师范大学遥感与地球科学研究院,浙江 杭州 311121

浙江大学计算机科学与技术学院,浙江 杭州 310058

杭州市余杭区农业技术推广中心,浙江 杭州 310023

浙江省农业科学院数字农业研究所,浙江 杭州 310022

浙江大学农业遥感与信息技术应用研究所,浙江 杭州 310058

浙江大学生物灾害空间信息技术研究实验室,浙江 杭州 310058

展开 >

冬小麦 Sentinel-2卫星 多时相遥感影像 植被分类 种植面积提取

国家自然科学基金面上项目浙江省"三农九方"科技协作计划项目

4085F402160382024SNJF032

2024

杭州师范大学学报(自然科学版)
杭州师范大学

杭州师范大学学报(自然科学版)

CSTPCD
影响因子:0.386
ISSN:1674-232X
年,卷(期):2024.23(2)
  • 20