首页|次分数随机波动率下可转换债券定价

次分数随机波动率下可转换债券定价

扫码查看
可转换债券作为同时涉及债券、股票和期权的复合衍生证券,其定价是金融数学的热点问题.考虑实际金融资产收益率不具有独立增量和平稳增量,以及波动率具有随机性,建立标的资产价格服从次分数布朗运动驱动的随机微分方程和Hull-White随机波动率模型,采用极大似然估计方法得到模型参数,利用蒙特卡洛法模拟计算可转换债券的价格.结合东时转债实际交易数据进行实证分析,并与其他模型进行对比,结果表明次分数随机波动率下可转换债券定价模型比传统模型更符合金融市场的变化.
Pricing Convertible Bond with Stochastic Volatility in the Sub-fractional Environment
Convertible bond,as a compound derivative security involving bond,stock and option,is a hot topic in financial mathematics.Considering that the return rate of financial asset does not have independent and stationary increments,as well as the randomness of volatility,a stochastic differential equation driven by sub-fractional Brownian motion and a Hull-White stochastic volatility model were established for the underlying asset price.The parameters in the model were obtained by maximum likelihood estimation method,and the price of convertible bonds was simulated and calculated using Monte Carlo method.The empirical analysis was discussed using the actual data of Dongshi convertible bond and compared with other models.The results indicated that the convertible bond pricing model under the sub-fractional stochastic volatility was more in line with changes in the financial market than the traditional model.

sub-fractional Brownian motionstochastic volatilityMonte Carlo simulationconvertible bondparameter estimation

王菩、薛红、张娟

展开 >

西安工程大学理学院,陕西西安 710048

次分数布朗运动 随机波动率 蒙特卡洛模拟 可转换债券 参数估计

陕西省自然科学基金项目

2016JM1031

2024

杭州师范大学学报(自然科学版)
杭州师范大学

杭州师范大学学报(自然科学版)

CSTPCD
影响因子:0.386
ISSN:1674-232X
年,卷(期):2024.23(3)
  • 12