首页|四阶Edgeworth密度函数上的有效域与隐含波动率应用

四阶Edgeworth密度函数上的有效域与隐含波动率应用

扫码查看
以正态分布为基底的Edgeworth级数展开是一个渐进展开序列,其截断形式常用以逼近未知的概率密度函数.若截断的Edgeworth级数能成为一个有效的(非负的)概率密度,前提条件是对参数(累积量)的取值做一些限制.文章介绍了在数值上求解四阶Edgeworth展开中参数的约束区域的算法,从而保证参数限制在有效区域内的四阶Edgeworth展开序列可以被认为是有效的概率密度.此外,给出了基于Black-Scholes公式的四阶Edgeworth密度函数的期权定价公式,并建立了隐含波动率微笑的水平、斜率和曲率与风险中性标准差、偏度和超值峰度之间的联系.
Valid Region of Fourth-order Edgeworth Density Function and Its Application on Implied Volatility Smirk
The Edgeworth series expansion based on a normal distribution is a sequence of asymptotic expansion,whose truncation form is commonly used in approximately unknown probability density function.The Edgeworth expansion is widely used,and its truncation form is defined as an effective(non-negative)probability density but with some given restrictions on the value of the parameters(cumulants).In this paper,the algorithm for numerically solving the constrained region of the parameters in the fourth-order Edgeworth expansion was introduced,thus ensuring that the fourth-order Edgeworth expansion sequence with parameters restricted within the effective region could be considered as an effective probability density.Furthermore,an option pricing formula for the fourth-order Edgeworth density function based on the Black-Scholes formula was proposed.The relationships among the level,slope,and curvature of the implied volatility smirk and the risk-neutral standard deviation,skewness,and overvalue kurtosis were established.

Edgeworth expansionEdgeworth density functionimplied volatility smirkskewnesskurtosis

沈康力、林炜、张慧增

展开 >

杭州师范大学数学学院,浙江杭州 311121

Edgeworth级数 Edgeworth密度函数 隐含波动率微笑 偏度 峰度

浙江省自然科学基金项目杭州师范大学科研启动基金项目浙江省统计局统计青年研究项目

LQ22A010034085C502020408922TJQN13

2024

杭州师范大学学报(自然科学版)
杭州师范大学

杭州师范大学学报(自然科学版)

CSTPCD
影响因子:0.386
ISSN:1674-232X
年,卷(期):2024.23(3)
  • 8