首页|基于多尺度残差网络的脊柱CT图像分割算法

基于多尺度残差网络的脊柱CT图像分割算法

扫码查看
为提升脊柱计算机断层扫描(computed tomography,CT)图像的分割精度,提出了一种基于U-Net网络的优化分割方法.该方法在特征提取阶段采用多尺度残差网络优化结构,改善图像特征提取质量.同时,在上采样过程中采用注意力模块,用于优化骨骼边缘信息的提取.实验结果表明,该算法的Dice系数、准确率、精度及召回率分别达到了 95.82%、99.62%、96.05%和99.83%,均高于同类算法,有效提升了脊柱CT图像的分割质量.
Spine CT Image Segmentation Algorithm Based on Multi-scale Residual Network
In order to improve the segmentation accuracy of spine computed tomography(CT)images,this paper proposes an optimized segmentation method based on the U-Net network.In the feature extraction stage,the multi-scale residual network is used to optimize the structure and improve the quality of image feature extraction.At the same time,an attention module is used in the up-sampling process to optimize the extraction of bone edge information.Experimental results show that the Dice coefficient,accuracy rate,precision and recall rate of the algorithm reach 95.82%,99.62%,96.05%and 99.83%respectively,which are higher than similar algorithms,and effectively improve the segmentation quality of medical CT images.

U-Netdeep learningresidual networkimage segmentation

王徽、陈汉清、金顺楠、童睿、周迪斌

展开 >

杭州师范大学信息科学与技术学院,浙江 杭州 311121

杭州三坛医疗科技有限公司,浙江 杭州 310030

U-Net 深度学习 残差网络 图像分割

2024

杭州师范大学学报(自然科学版)
杭州师范大学

杭州师范大学学报(自然科学版)

CSTPCD
影响因子:0.386
ISSN:1674-232X
年,卷(期):2024.23(6)