首页|反三角挠动矩阵的Mosic-Abyzov逆

反三角挠动矩阵的Mosic-Abyzov逆

扫码查看
文章讨论了 Banach代数上反三角挠动矩阵的Mosic-Abyzov可逆性.假设a,b∈A⊕.在b⊕a=0和babπ=0的条件下,利用Peirce分解证明了(a1b0)∈M2(A)⊕.同时,基于矩阵的加法分解,在b2a=0和ababπ=0的条件下,证明了(a1b0)∈M2(A)⊕.进一步地,利用方程ax+1=xbx的可解性,在条件b⊕a=0和(ab)bπ=(ba)bπ 下证明了(a1b0)∈M2(A)⊕.
Mosic-Abyzov Inverse of the Anti-triangular Perturbation Matrix
This paper investigated the Mosic-Abyzov inverse of an anti-triangular perturbation matrix over Banach algebra.Let a,b∈A⊕,under the conditions of b⊕a=0 and babπ=0,it is proved that (a1b0)∈M2(A)⊕ using the Peirce decomposition.Based on the additive decomposition of matrices,it is also proved that if b2 a=0 and ababπ=0,then(a1b0)∈M2(A)⊕.Moreover,it is shown that(a1b0)∈ M2(A)⊕ if b⊕ a=0 and(ab)bπ=(ba)bπ by means of the(a1b0)∈M(A)⊕.Moreover,it is shown that (a1b0)∈M2(A)⊕ifb⊕a=0 and(ab)bπ=(ba)b by means of the solvability of the equation ax+1=xbx.

Mosic-Abyzov inversePeirce decompositionanti-triangular matrixBanach algebra

金雅妮、陈焕艮

展开 >

杭州师范大学数学学院,浙江 杭州 311121

Mosic-Abyzov逆 Peirce分解 反三角矩阵 Banach代数

2024

杭州师范大学学报(自然科学版)
杭州师范大学

杭州师范大学学报(自然科学版)

CSTPCD
影响因子:0.386
ISSN:1674-232X
年,卷(期):2024.23(6)