首页|Allen-Cahn方程的一种并行差分方法

Allen-Cahn方程的一种并行差分方法

扫码查看
文章给出了具有纽曼边界条件的Allen-Cahn方程的交替分段Crank-Nicolson格式.结合经典Crank-Nicolson格式和4种不同类型的Saul'yev非对称格式构造了 ASC-N并行差分格式,对ASC-N格式的唯一性进行了理论分析,并讨论了数值算法的离散最大值原理.理论分析与数值结果表明,在网格密度较大时,ASC-N并行格式相较于经典的Crank-Nicolson格式可大幅度节省计算时间,高效求解Allen-Cahn方程.
A Parallel Difference Method for Allen-Cahn Equation
In this paper,the alternant-segmented Crank-Nicolson(ASC-N)scheme of Allen-Cahn equations with Newman boundary conditions was given.The ASC-N parallel difference scheme was constructed by combining the classic Crank-Nicolson scheme and four different Saul'yev asymmetric schemes.The uniqueness of the ASC-N scheme was analyzed theoretically,and the discrete maximum principle of the numerical algorithm was discussed.Theoretical analysis and numerical results showed that the parallel ASC-N scheme could greatly save calculation time and efficiently solve Allen-Cahn equation compared with the classical Crank-Nicolson scheme when the grid density was high.

Allen-Cahn equationASC-N schemediscrete maximum principleparallel difference scheme

梁琪琪、全赛君、岳宏杰、韩丹夫

展开 >

杭州师范大学数学学院,浙江 杭州 311121

南通职业大学数学教研室,江苏南通 226007

Allen-Cahn方程 ASC-N方法 离散最大值原理 并行差分格式

2024

杭州师范大学学报(自然科学版)
杭州师范大学

杭州师范大学学报(自然科学版)

CSTPCD
影响因子:0.386
ISSN:1674-232X
年,卷(期):2024.23(6)