首页|基于双目视觉的人机交互测距方法研究

基于双目视觉的人机交互测距方法研究

扫码查看
随着人机交互、无人驾驶等领域的兴起,机器视觉已成为目前重点的研究领域之一.对比研究了红外测距、超声波测距和双目测距三种测距方法,采用计算机视觉技术提出了一种基于双目视觉的人机交互测距方法,并且建立了人脸检测和逻辑回归模型.首先利用双目相机标定工具箱对双目摄像头进行标定;然后将采集到的行人图像导入计算机,对未检测到的图像利用逻辑回归模型给出预测,通过改进的BM算法进行立体匹配获得视差图像;最后通过鼠标点击相应位置进而获得该位置的深度信息,从而实现测距功能.实验结果表明,提出的双目测距方法效率高、结果精确,在 1 800~3 600 mm的测距误差可保证在 4%以内,具有良好的测距效果.
Research on Human-Computer Interaction Distance Measurement Method Based on Binocular Vision
With the rise of human-computer interaction and unmanned driving,machine vision has be-come one of the key research areas at present.Three distance measurement methods,namely infrared ran-ging,ultrasonic ranging,and binocular ranging,were compared.A human-computer interaction distance measurement method based on binocular vision was proposed using computer vision technology,and a face detection and logistic regression model were established.First,the binocular cameras were calibrated using the binocular camera calibration toolbox.Then,the collected pedestrian images were imported into the computer.For images not detected,predictions were made using the logistic regression model.Stereo matching was performed using the improved BM algorithm to obtain the disparity image.Finally,depth information for the corresponding position was obtained by clicking the mouse,thereby achieving distance measurement.Experimental results show that the proposed binocular distance measurement method is effi-cient and accurate.The ranging error is guaranteed to be within 4%in the range of 1 800mm to 3 600mm,indicating good ranging performance.

human-computer interactionbinocular visionface detectionimproved BM algorithmdisparity image

官世杰

展开 >

重庆交通大学机电与车辆工程学院,重庆 400074

人机交互 双目视觉 人脸检测 改进BM算法 视差图像

城市轨道交通车辆系统集成与控制重庆市重点实验室开放基金交通工程应用机器人重庆市工程实验室开放基金(2020)

CKLURTSIC-KFKT-202006CELTEAR-KFKT-202003

2024

菏泽学院学报
菏泽学院

菏泽学院学报

影响因子:0.404
ISSN:1673-2103
年,卷(期):2024.46(2)
  • 16