首页|k正则点传递二部图的超圈边连通性

k正则点传递二部图的超圈边连通性

扫码查看
如果删除一个图G的边集E后,至少有两个连通分支有圈,则称E为图G的圈边割,把有圈边割的图称为圈可分的.对于一个圈可分图G来说,最小圈边割的基数称为圈边连通度λc(G).如果去除任何一个最小圈边割,总存在一连通分支为最小圈,则图G为超圈边连通的.利用反证法,得到一个(k≥4)正则围长g(G)≥6的点传递二部图是超圈边连通的.
Hyper-cyclic Edge Connectivity of K-regular Point Transitive Bipartite Graphs
If deleting the edge set E of a graph G,there are at least two connected branches with loops,then E is called the edge cut of graph G,and the graph with edge cuts is called separable.For a sep-arable graph G,the cardinality of the minimum circle edge cut is called the circle edge connectivity λc(G).If any minimum loop edge cut is removed,there will always be a connected branch that is the minimum loop,and then graph G is hyper loop edge connected.Using the method of proof by contradiction,it is found that k(≥4)regular bipartite graph with a circumference of g(G)≥6 is hyper-cyclic edge connected.

cyclic edge-connectivitycyclic edge-cuthyper-cyclic edge connectivityorbit

万海云、姜海宁

展开 >

菏泽医学专科学校公共教学部,山东菏泽 274000

菏泽学院数学与统计学院,山东菏泽 274015

圈边连通度 圈边割 超圈边连通性 轨道

2024

菏泽学院学报
菏泽学院

菏泽学院学报

影响因子:0.404
ISSN:1673-2103
年,卷(期):2024.46(5)