首页|机器学习和Cox比例风险回归模型预警高危型HPV持续感染

机器学习和Cox比例风险回归模型预警高危型HPV持续感染

扫码查看
目的 建立基于机器学习的人乳头瘤病毒(human papilloma virus,HPV)预测模型,确定与高危型人乳头瘤病毒(high-risk human papilloma virus,HR-HPV)持续感染相关的因素,为早期预警HR-HPV持续感染人群提供帮助.方法 收集4 407例于2017年9月-2019年9月在泰州市4所卫生机构参与HPV检测,并于2020年9月-2022年9月按照要求参与HPV随访者的临床资料.将队列研究中4 407例研究对象的人口特征作为机器学习模型输入,2次HPV检查结果的变化过程作为输出,建立基于机器学习的预测模型,包括随机森林(random forest,RF)和多层感知机l(multilay-er perceptron,MLP),预测研究对象的HPV随访结果.采用单因素Cox比例风险回归模型和多因素Cox比例风险回归模型对583例初筛HR-HPV阳性病例进行统计分析,分析HR-HPV持续感染的特征及转归的影响因素.结果 RF预测模型准确率为84.3%,MLP准确率为80.5%.HR-HPV持续阳性率的前5位病毒型别为HPV58、多重感染、HPV31、HPV33、HPV52.多因素Cox比例风险回归模型研究显示,初中及以下学历人群HR-HPV感染转阴风险是高中及以上学历人群的1.72倍(HR=1.72,95%CI:1.03~2.87,P=0.037),未绝经人群HR-HPV感染转阴风险是绝经人群的2.11倍(HR=2.11,95%CI:1.10~4.06,P=0.025).结论 机器学习和Cox比例风险回归模型可提前预警HR-HPV持续感染人群,对HR-HPV感染女性后续管理和宫颈癌防控有重要的临床价值.
Machine learning and Cox proportional hazards regression model for warning of persistent infec-tion with high-risk HPV type
Objective A prediction model of human papillomavirus based on machine learning was established to determine the factors associated with the persistent infection of high-risk human papilloma vi-rus(HR-HPV),so as to provide early warning for the persistent infection of HR-HPV.Methods Clinical data of 4 407 women who participated in HPV testing at four health centers in Taizhou City from September 2017 to September 2019 and participated in HPV follow-up from September 2020 to September 2022 were collected.The demographic characteristics of total 4 407 subjects in this cohort study were used as the input of the machine learning model,and the change process of the results of the two HPV inspections as the out-put,a prediction model based on machine learning was established,including random forest and multi-layer perceptron,to predict the HPV follow-up results of the research object.Univariate Cox risk proportion re-gression model and multivariate Cox risk proportion regression model were used to statistically analyze 583 primary screening HR-HPV positive cases.Results The accuracy of the random forest prediction model was 84.3%,and the accuracy of the multi-layer perceptron was 80.5%.The top five viral types with persis-tent positive rate of HR-HPV were HPV58,multiple infections,HPV31,HPV33,and HPV52.The multi-variate Cox regression analysis showed that the conversion risk of HR-HPV infection in those with junior high school education or below was 1.72 times that of those with high school education and above(HR=1.72,95%CI:1.03-2.87,P=0.037),and the conversion risk of HR-HPV infection in non-menopausal individuals was 2.11 times higher than that in menopausal individuals(HR=2.11,95%CI:1.10-4.06,P=0.025).Conclusions Machine learning and Cox regression analysis models can provide an early warn-ing of the HR-HPV persistent infection population,which has an important clinical value for the subsequent management of HR-HPV-infected women and the prevention and control of cervical cancer.

Machine learningCox proportional hazards regression modelHigh-risk human papil-lomavirusPersistent infectionCervical cancer

丁宏梅、张明亚、胥小琴、张宏秀

展开 >

南京医科大学第一附属医院妇产科,南京 210029

泰州市第四人民医院妇产科,泰州 225300

南京大学计算机软件新技术国家重点实验室,南京 210023

南京市鼓楼区凤凰社区卫生服务中心妇保科,南京 210024

展开 >

机器学习 Cox比例风险回归模型 高危型人乳头瘤病毒 持续性感染 子宫颈癌

江苏省妇幼保健协会科研项目

FYX202345

2024

中华疾病控制杂志
中华预防医学会 安徽医科大学

中华疾病控制杂志

CSTPCD北大核心
影响因子:1.862
ISSN:1674-3679
年,卷(期):2024.28(9)
  • 4