首页|基于深度学习的水下目标识别技术

基于深度学习的水下目标识别技术

扫码查看
在水下复杂场景下,目标对象具有姿态不同、遮挡和背景复杂等特点,这对卷积网络的特征提取能力提出巨大挑战.Mask R-CNN算法在水下目标特征提取过程中也存在特征提取能力欠佳的问题,导致算法在水下目标检测准确性较差.因此,提出一种基于Mask R-CNN的改进水下目标目标识别方法.首先可采用金字塔切分的通道注意力模块PAS代替采用了ResNet50的3×3卷积模块,该模块可通过对每个通道进行金字塔的切分,针对通道切分完成后所得出来的通道特征图上的空间信息来进行不用的尺度特征层提取;同时通过采用另一种更加安全稳定和高效的ECANEt通道注意力模块代替PAS模块中的SENet通道注意力模,对多维度的通道注意力权重进行特征重标定;最后对特征金字塔FPN的网络结构进行改进,加强不同特征层之间的信息融合.根据不同场景下进行的实验对比,改进后的网络能够提高水下目标识别的准确率,平均检测精度可达91.3%.本文所提出的改进Mask R-CNN网络模型,能够适应水下复杂多变的场景,为水下目标的识别提供理论依据与技术方案.
Underwater target recognition technology based on deep learning
In the complex underwater scene,the target object has the characteristics of different poses,occlusion and complex background,which poses a huge challenge to the feature extraction ability of convolutional network.Mask R-CNN algorithm also has the problem of poor feature extraction ability in the process of underwater target feature extraction,which leads to poor accuracy of the algorithm in underwater target detection.Therefore,this paper proposes an improved underwa-ter target recognition method based on Mask R-CNN.First,use the pyramid segmentation attention module PAS to replace 3×3 module in ResNet50.This module first segments the channel,and then extracts the spatial information on each segmen-ted channel feature map without scale features.At the same time,it uses a more efficient ECANet channel attention module to replace the SENet channel attention module in PAS,and recalibrates the multi-dimensional channel attention weight;Fi-nally,the network structure of feature pyramid FPN is improved to strengthen the information fusion between different fea-ture layers.According to the experimental comparison in different scenes,the improved network can improve the accuracy of underwater target recognition,and the average detection accuracy can reach 91.3%.The improved Mask R-CNN network model proposed in this paper can adapt to complex and changeable underwater scenes,providing a theoretical basis and tech-nical solution for underwater target recognition.

underwater target recognitionMask R-CNNdeep learning

丁元明、徐利华、侯孟珂

展开 >

大连大学信息工程学院,辽宁大连 116622

大连大学通信与网络重点实验室,辽宁大连 116622

水下目标识别 Mask R-CNN 深度学习

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(1)
  • 15