首页|深海载人潜水器多约束先验图像增强方法

深海载人潜水器多约束先验图像增强方法

扫码查看
针对深海载人潜水器人造光源照射造成深海图像颜色失真、散射模糊以及光照不均匀等图像降质问题,提出一种基于多约束先验的贝叶斯Retinex深海载人潜水器图像增强方法.该方法首先通过一种基于统计的颜色校正方法对图像进行色彩校正处理,然后对光照图先后进行平滑、结构和不均匀光照高亮区域3种先验,并将3种先验条件结合到贝叶斯模型当中,并选取Lab颜色空间中L分量作为初始光照图来进行光照图估计的最优化求解.最后,通过伽马校正的方法对光照图和反射图进行处理,获得增强后的深海图像.实验结果表明,所提出的方法平均运行时间4.39 s,具有较低的复杂度,更加适合深海恶劣环境下的图像增强,处理得到的深海图像具有更好的观测效果.
Research on multi-constrained priori image enhancement for deep-sea human occupied vehicle
A Bayesian Retinex image enhancement method based on multi-constraint prior was proposed to solve the problem of image degradation caused by artificial light source illumination of deep-sea Human Occupied Vehicle,such as color distortion,scattering blur and uneven illumination.The method first through a statistical color correction method based on the image color correction processing,and then the illumination map successively smoothing,structure and uneven illu-mination highlight region three prior,and the three prior conditions into the Bayesian model,and select the L component in the Lab color space as the initial illumination map to optimize the illumination map estimation.Finally,enhanced deep sea images were obtained by gamma correction for the illumination and reflection maps.The experimental results show that the proposed method has an average running time of 4.39 s,which has low complexity and is more suitable for image enhance-ment work in harsh deep-sea environments,and the processed deep-sea images have better observation effect.

underwater image enhancementBayesian estimationRetinex theorydeep-sea human occupied vehicle

秦豪、赵洋、王国刚

展开 >

沈阳化工大学信息工程学院,辽宁沈阳 110142

中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳 110016

中国科学院机器人与智能制造创新研究院,辽宁沈阳 110169

辽宁省水下机器人重点实验室,辽宁沈阳 110169

展开 >

水下图像增强 贝叶斯估计 Retinex理论 深海载人潜水器

国家重点研发计划项目辽宁省教育厅高等学校基本科研项目(重点项目)

2016YFC0300604LJKZ0442

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(2)
  • 14