首页|基于深度神经网络的船舶图像识别检索研究

基于深度神经网络的船舶图像识别检索研究

扫码查看
对船舶图像进行快速准确识别在军民领域都有广泛应用,随着船舶种类的增多、图像质量的提高,传统的卷积神经网络进行船舶图像识别需耗费大量时间.本文对深度神经网络的原理进行分析,并在此基础上研究基于深度神经网络的船舶图像识别流程,对船舶图像预处理技术进行研究,建立船舶图像训练集和测试集,对YOLOV2、卷积神经网络和本文算法的平均识别时间和识别准确率进行分析测试,最后研究3种算法的训练次数对识别准确率的影响.本文研究的深度神经网络船舶图像识别算法,在平均识别时间以及识别准确率上具有一定优势.
Research on ship image recognition and retrieval based on deep neural network
Fast and accurate recognition of ship images is widely used in both civil and military fields.With the in-crease of ship types and the improvement of image quality,it takes a lot of time to adapt the traditional convolutional neural network to ship image recognition.In this paper,the principle of deep neural network is analyzed,and on this basis,the ship image recognition process based on deep neural network is studied,the ship image preprocessing technology is studied,the ship image training set and test set are established,and the average recognition time and recognition accuracy of YOLOV2,convolutional neural network and the algorithm in this paper are analyzed.Finally,the influence of the training times of the three algorithms on the recognition accuracy is studied.The deep neural network ship image recognition algorithm studied in this paper has certain advantages in average recognition time and recognition accuracy.

deep neural networkimage recognitionimage preprocessingtest

赵圆圆、李月军、李昌庆、李春红、梁丽莎

展开 >

湛江科技学院智能制造学院,广东湛江 524000

深度神经网络 图像识别 图像预处理 测试

广东省"攀登计划"项目广东省教育厅实验教学示范中心类项目湛江科技学院品牌提升计划项目

pdjh2023b0787粤教高函20234号PPJH2021008

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(3)
  • 7