首页|柴油机燃烧室部件声发射诊断方法研究

柴油机燃烧室部件声发射诊断方法研究

扫码查看
本文基于声发射信号和迁移学习,提出一种新的柴油机燃烧室故障诊断方法.研究在TBD234V6型柴油机上模拟了喷油器堵塞、启阀压力减小和排气阀漏气故障等,用CompactRIO硬件进行信号采集,并针对燃烧室部件故障后声发射信号的特征进行分析.研究表明,以特征参数提取和迁移学习为基础的故障诊断方法能更准确地识别不同故障类型,相对于传统机器学习算法,其准确度更高,泛化能力也更强,对于数据样本较少和不同数据分布的情况下也有较好适应性.此研究对于保证柴油机燃烧室部件的健康状况、确保船舶安全航行具有重要意义.
Research on acoustic emission diagnosis of diesel combustion chamber components
Based on acoustic emission signal and transfer learning,a new fault diagnosis method for diesel combustion chamber is presented in this paper.In this paper,the oil injector blockage,valve pressure reduction and exhaust valve leak-age fault are simulated on TBD234V6 diesel engine.CompactRIO hardware is used to collect signal,and the characteristics of AE signal after the failure of combustion chamber components are analyzed.Research shows that fault diagnosis method based on feature parameter extraction and transfer learning can identify different fault types more accurately.Compared with traditional machine learning algorithm,fault diagnosis method has higher accuracy,stronger generalization ability,and bet-ter adaptability to the case of fewer data samples and different data distribution.This study is of great significance to ensure the health of diesel combustion chamber components and safe navigation of ships.

diesel engineacoustic emissionTrAdaBoostfault diagnosiscombustion chamber component

夏敬停

展开 >

上海市船舶检验处,上海 200002

柴油机 声发射 TrAdaBoost 故障诊断 燃烧室部件

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(5)
  • 26