首页|基于大数据统计的船舶通信网络流量估计数学模型设计

基于大数据统计的船舶通信网络流量估计数学模型设计

扫码查看
估计船舶通信网络流量,可以更好地了解网络性能,有助于优化网络配置,提高船舶通信网络的性能和可靠性,确保船舶航行过程中的通信畅通.为此,设计基于大数据统计的船舶通信网络流量估计数学模型,以提升网络流量估计效果.利用C-C算法计算船舶通信网络流量的延迟时间,通过G-P算法计算船舶通信网络流量的嵌入维数;依据延迟时间与嵌入维数,转换原始船舶通信网络流量时间序列数据,得到多维船舶通信网络流量时间序列数据;利用Map机制为各节点上的极限学习机分配数据子集,建立船舶通信网络流量估计数学模型;通过Reduce机制,汇总全部网络流量估计数学模型,得到最终的网络流量估计结果.实验证明,该模型可有效确定延时时间与嵌入维数,分别为5 min与6维;该模型可精准估计船舶通信网络流量.
Design of mathematical model of ship communication network traffic estimation based on big data statistics
Estimating the traffic of ship communication network can better understand the network performance,help to optimize the network configuration,improve the performance and reliability of ship communication network,and ensure the smooth communication during ship navigation.Therefore,a mathematical model of ship communication network traffic es-timation based on big data statistics is designed to improve the effect of network traffic estimation.C-C algorithm is used to calculate the delay time of ship communication network traffic,and G-P algorithm is used to calculate the embedded dimen-sion of ship communication network traffic.According to the delay time and embedded dimension,the original ship commu-nication network traffic time series data is converted to obtain the multi-dimensional ship communication network traffic time series data.Map mechanism is used to assign data subset to the extreme learning machine on each node,and the math-ematical model of ship communication network traffic estimation is established.The reduce mechanism is used to summar-ize all the mathematical models of network traffic estimation and get the final network traffic estimation result.Experimental results show that the model can effectively determine the delay time and embedding dimension,which are 5 min and 6D re-spectively.This model can accurately estimate the traffic of ship communication network.

big data statisticsship communicationnetwork traffic estimationmathematical modeldelay timeembedded dimension

宁滔

展开 >

桂林电子科技大学计算机工程学院,广西北海 536000

大数据统计 船舶通信 网络流量估计 数学模型 延迟时间 嵌入维数

广西壮族自治区职业教育教学改革重点项目

GXGZJG2021A035

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(6)
  • 1
  • 5