首页|基于神经网络的船舶综合电力系统负荷组合预测研究

基于神经网络的船舶综合电力系统负荷组合预测研究

扫码查看
随着纯电动船舶的高速发展,其用电负荷在电力市场交易中的影响日渐突出,为此该文提出一种船舶综合电力系统负荷神经网络组合预测方法,旨在提高预测精度.首先,分析纯电动船舶综合电力系统在多种工况下的负荷特性.然后,研究基于典型神经网络的船舶综合电力系统负荷预测方法,揭示其在复杂工况下预测的局限性.针对以上问题,提出了基于BP和RBF神经网络相结合的船舶综合电力系统负荷组合预测方法.此组合预测方法集合了 BP和RBF神经网络模型的优势,提高了预测模型的泛化能力和容错率.最后,以江苏某纯电动船舶为实际算例,针对复杂工况下的船舶综合电力系统负荷进行对比预测.结果表明,所提方法与单一预测算法相比,预测精度从96.63%提高至98.98%.
Research on load combination forecasting of ship integrated power system based on neural network
With the rapid development of pure electric ships,the impact of their electricity load on electricity market transactions is becoming increasingly prominent.Therefore,this paper proposes a ship integrated power system load neural network combination prediction method,aiming to improve prediction accuracy.Firstly,analyze the load characteristics of the integrated power system of pure electric ships under various operating conditions.Then,study the load forecasting meth-od for ship integrated power system based on typical neural networks,and reveal its limitations in predicting complex work-ing conditions.In response to the above issues,a load combination prediction method for ship integrated power system based on a combination of BP and RBF neural networks is proposed.This combined prediction method combines the advantages of BP and RBF neural network models,improving the generalization ability and fault tolerance of the prediction model.Finally,taking a pure electric ship in Jiangsu as an actual calculation example,a comparative prediction of the comprehensive power system load of the ship under complex working conditions is conducted.The results show that compared with a single pre-diction algorithm,the proposed method improves the prediction accuracy from 96.63%to 98.98%.

ship power systemload forecastingBP neural networkRBF neural network

严文博、黄云辉、熊斌宇、唐金锐、王栋、周克亮

展开 >

武汉理工大学 自动化学院,湖北武汉 430070

船舶电力系统 负荷预测 BP神经网络 RBF神经网络

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(7)
  • 21