首页|基于多特征融合的舰船目标检测方法研究

基于多特征融合的舰船目标检测方法研究

扫码查看
为避免复杂海洋背景导致的舰船检测效果差问题,研究基于多特征融合的舰船目标检测方法.以选择性搜索算法获取初始舰船目标潜在区域为基础,结合几何和灰度特征约束从中选取舰船目标潜在区域,分别从舰船目标潜在区域中提取纹理、亮度、轮廓特征,通过自适应融合系数融合舰船目标多特征,以多特征融合结果为支持向量机分类器的输入,实现舰船目标检测.实验结果显示,该方法可有效降低38%以上的初始潜在区域数量;结合多特征的舰船目标描述能力,可实现精准舰船目标检测.
Research on ship target detection method based on multi feature fusion
To avoid the problem of poor ship detection performance caused by complex ocean backgrounds,a ship tar-get detection method based on multi feature fusion is studied.Based on the selective search algorithm to obtain the initial po-tential area of the ship target,combined with geometric and grayscale feature constraints,the potential area of the ship target is selected.Texture,brightness,and contour features are extracted from the potential area of the ship target,and the adaptive fusion coefficient is used to fuse the multiple features of the ship target.The fusion result of the multiple features is used as input for the support vector machine classifier to achieve ship target detection.The experimental results show that this meth-od can effectively reduce the number of initial potential regions by more than 38%;By combining the ability to describe ship targets with multiple features,precise ship target detection can be achieved.

multi feature fusionship inspectiontexture featuresadaptive fusionsupport vector machine

刘玉洁、补冲

展开 >

电子科技大学成都学院,四川成都 610054

多特征融合 舰船检测 纹理特征 自适应融合 支持向量机

教育部产学合作协同育人项目(第二批)(2019)四川省教育厅自然科学研究一般项目四川省地方普通本科高等学校应用型示范专业建设项目(第二批)

20190200504318ZB0256255-256

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(9)