首页|基于PPO的异构UUV集群任务分配算法

基于PPO的异构UUV集群任务分配算法

扫码查看
无人水下航行器(Unmanned Underwater Vehicle,UUV)集群的任务分配问题是UUV集群形成水下功能的重要问题之一,但是,受限于通信以及探测能力,UUV在水下只能获取有限的信息,不能得到很好的应用.提出一种基于深度强化学习的任务分配算法,针对水下信息缺失、奖励稀少的问题,在近端策略优化算法的基础上加入Curiosity模块,给智能体一种减小环境中不确定性的期望,鼓励UUV探索环境中不可预测的部分,实现UUV集群的最优任务分配.最后的仿真实验表明,相较于传统智能算法,该方法收敛更快,可靠性更强.
Heterogeneous UUV cluster task allocation algorithm based on PPO
The Assignment problem problem of the UUV cluster is one of the important problems for the formation of the underwater function of the UUV cluster.However,due to the communication and detection capabilities,UUV can only obtain limited information underwater and cannot be used well.A task allocation algorithm based on deep reinforcement learning is proposed.Aiming at the problem of lack of underwater information and scarce rewards,the Curiosity module is added on the basis of the near end strategy optimization algorithm,giving agents an expectation to reduce the uncertainty in the environment,encouraging UUV to explore the unpredictable part of the environment,and realizing the optimal task alloc-ation of UUV clusters.The final simulation experiment shows that compared to traditional intelligent algorithms,it con-verges faster and has stronger reliability.

task allocationproximal policy optimizationcluster

董经纬、姚尧、冯景祥、李亚哲、尤岳

展开 >

中国船舶集团有限公司第七一六研究所,江苏连云港 222061

中国人民解放军92578部队,北京 100071

任务分配 近端策略优化算法 集群

中国科协青年人才托举工程项目

2020-JCJQ-QT-013

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(12)
  • 6