首页|基于模式识别的舰船机械电子设备故障自动监测

基于模式识别的舰船机械电子设备故障自动监测

扫码查看
舰船机械电子设备故障数据量较为庞大,且模式复杂多样,为满足其复杂性的要求,提出基于模式识别的舰船机械电子设备故障自动监测方法,采集舰船机械电子设备运行中的温度、压力、振动等数据作为故障监测的原始数据,计算数据间的相似系数和欧氏距离,结合K均值算法实现数据聚类处理.通过小波包算法对聚类后的数据进行特征提取,将其输入到卷积神经网络中,通过对监测模型进行训练,最终实现对舰船机械电子设备故障自动监测.通过实验分析,该方法与相关人员进行监测的故障情况高度一致,在不同故障类型监测的时间均能够保持在5 ms以内,具有较高的监测效率和监测精准度.
Automatic fault monitoring of ship mechanical and electronic equipment based on pattern recognition
The data volume of ship mechanical and electronic equipment faults is relatively large,and the patterns are complex and diverse.To meet its complexity requirements,a pattern recognition based automatic monitoring method for ship mechanical and electronic equipment faults is proposed.The temperature,pressure,vibration and other data during the opera-tion of ship mechanical and electronic equipment are collected as the raw data for fault monitoring.The similarity coeffi-cient and Euclidean distance between the data are calculated,and the K-means algorithm is combined to achieve data cluster-ing processing.By using the wavelet packet algorithm to extract features from the clustered data and inputting them into a convolutional neural network,the monitoring model is trained to achieve automatic monitoring of ship mechanical and elec-tronic equipment faults.Through experimental analysis,this method is highly consistent with the fault conditions monitored by relevant personnel,and can maintain monitoring time within 5ms for different types of faults,with high monitoring effi-ciency and accuracy.

pattern recognitionship mechanical and electronic equipmentfault monitoringK-mean algorithmwavelet packet algorithmconvolutional neural network

周丹、熊建华、李柯

展开 >

南昌理工学院机电工程学院,江西南昌 330044

模式识别 舰船机械电子设备 故障监测 K均值算法 小波包算法 卷积神经网络

江西省自然科学基金面上项目

20232BAB202003

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(13)
  • 4