首页|基于递归免疫网络在线辨识的AUV三维轨迹跟踪控制

基于递归免疫网络在线辨识的AUV三维轨迹跟踪控制

扫码查看
为了提高海流、海浪、水下噪声等扰动下的AUV三维轨迹跟踪精度,提出基于递归免疫网络在线辨识的PID自整定轨迹跟踪控制器(PID-RINN).首先建立AUV的运动学模型,并将其深度距离、首向角和俯仰角作为控制变量,设计了基于神经网络在线辨识的PID控制器;然后借鉴生物免疫系统的信息处理机制构建了递归免疫网络;接着将水下机器人在水平面上距预瞄路径点的侧向距离定义为疫苗,并联合细胞隐层输出接种到递归免疫网络的突触隐层;最后基于梯度法实现了递归免疫网络辨识下的PID控制器在线自整定.测试结果表明,与PID、PID_GA、PID_RBF相比,文中轨迹跟踪控制的平均和最大位置误差分别平均减少31.91%和25.81%,平均和最大首向角误差分别平均减少32.54%和25.27%,以及平均和最大俯仰角误差分别平均减少61.93%和61.26%,从而验证了文中递归免疫网络在线辨识的AUV三维轨迹跟踪具有高控制精度,以及强扰动抑制优点.
AUV 3D trajectory tracking control identified online by recurrent immune network
In order to improve the 3D trajectory tracking accuracy of autonomous underwater vehicle(AUV)under dis-turbances such as ocean current,ocean wave and underwater noise,a PID self-tuning trajectory tracking controller identified online by recurrent immune neural network(PID-RINN)is proposed.First,the kinematic model of the AUV is established,and the depth distance,heading angle and pitch angle of the AUV are taken as the control variables,and a PID controller identified online by the neural network is designed.Then a recursive immune network is constructed by referring to the in-formation processing mechanism of the biological immune system.After that,the lateral distance between the underwater ro-bot and the preview waypoint on the horizontal plane is defined as the vaccine,and is inoculated into the synaptic hidden lay-er of the recurrent immune network together with the output of the cellular hidden layer.Finally,based on the gradient meth-od,the online self-tuning of the PID controller identified by the recursive immune network is realized.Test results show that compared with PID,GA_PID,RBF_PID,the average and maximum position errors of the proposed PID-RINN are respect-ively reduced by an average of 31.91%and 25.81%,the average and maximum heading angle errors are reduced by an aver-age of 32.54%and 25.27%respectively,and the average and maximum pitch angle errors are reduced by an average of 61.93%and 61.26%respectively,which verifies that the 3D trajectory tracking identified online by the recursive immune network has the advantages of high control accuracy and strong disturbance suppression.

AUV3D trajectory trackingrecursive immune networkonline identificationPID controller

王舜、江亚峰、张亮、刘维、袁明新

展开 >

江苏科技大学机械工程学院,江苏镇江 212003

中科探海(苏州)海洋科技有限责任公司,江苏张家港 215600

张家港江苏科技大学产业技术研究院,江苏张家港 215600

自主水下机器人 三维轨迹跟踪 递归免疫网络 在线辨识 PID控制器

工信部高技术船舶项目张家港市产业链创新产品攻关计划资助项目张家港市产学研预研资金资助项目

[2019]360ZKC2206ZKYY2253

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(13)
  • 8