首页|基于LSTM阈值法的蒸汽动力辅助系统故障预警研究

基于LSTM阈值法的蒸汽动力辅助系统故障预警研究

扫码查看
为了提高船舶蒸汽动力辅助系统的运行安全性和可靠性,减少系统故障导致的船舶停航和潜在安全事故,提出一种结合长短期记忆网络(Long Short-Term Memory network,LSTM)和阈值法的故障预警方法.首先,利用LSTM模型处理船舶蒸汽动力辅助系统的历史运行数据、学习系统的动态行为和潜在故障模式.其次,通过设定阈值法,结合LSTM模型的预测输出,实现对系统状态的实时监控和故障预警.最后,基于MINIS 一体化仿真平台开发的蒸汽动力辅助系统模型,以汽轮给水泵转速故障为例,进行故障预警实验,验证方法的有效性.实验结果显示,结合LSTM的预测能力和阈值法的决策效率,提出的预警模型能有效识别并预警汽轮给水泵的转速故障.通过对比实际故障数据,模型在预测准确性和预警及时性方面均表现出色.该方法不仅提高了故障预警的准确性,而且为船舶维护和安全管理提供了有力决策支持,为类似工业系统的故障预警提供了新的研究思路.
Research on fault prognostics and warning for steam power auxiliary systems based on LSTM and threshold method
In order to enhance the operational safety and reliability of marine steam power auxiliary systems,and to re-duce ship downtime and potential safety incidents caused by system failures,a fault warning method combining Long Short-Term Memory(LSTM)networks and threshold methods is proposed.Initially,the LSTM model is utilized to process the his-torical operation data of marine steam power auxiliary systems,learning the system's dynamic behaviors and potential fail-ure patterns.Subsequently,by setting threshold methods in conjunction with the predictive outputs of the LSTM model,real-time monitoring and fault warning of the system state are achieved.Finally,fault warning experiments are conducted using a steam power auxiliary system model developed on the MINIS integrated simulation platform,taking the example of a steam turbine feedwater pump speed fault,to verify the effectiveness of the method.The experimental results demonstrate that the warning model,integrating the predictive capabilities of LSTM with the decision-making efficiency of the threshold method,can effectively identify and warn against speed faults of the steam turbine feedwater pump.By comparing with actual fault data,the model exhibits excellent performance in terms of prediction accuracy and timeliness of warnings.This method not only improves the accuracy of fault warnings but also provides robust decision support for marine maintenance and safety management.Furthermore,it offers a novel research perspective for fault warning in similar industrial systems.

steam power auxiliary systemfault prognostics and warninglong short-term memory network(LSTM)threshold method

梁聚伟、李东亮、陈焰恺、耿江华

展开 >

海军工程大学,湖北武汉 430033

海军工程大学动力工程学院,湖北武汉 430033

中国人民解放军91251部队,上海 201900

海军工程大学兵器工程学院,湖北武汉 430033

展开 >

蒸汽动力辅助系统 故障预警 长短期记忆网络(LSTM) 阈值法

国家自然科学基金资助项目

51576207

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(13)
  • 7