首页|环境驱动无人船大洋长航程路径规划研究

环境驱动无人船大洋长航程路径规划研究

扫码查看
环境驱动无人船,如波浪滑翔机、saildrone等,由于自身低航速性、欠驱动性和弱机动性,导致其在大洋航行时受洋流干扰显著,甚至在部分强洋流海域出现失控的情况.本文基于先验已知的动态流场,通过B样条控制点随机生成无人船路径,并计算每一条路径在动态流场中考虑路径距离、航行速度以及路径光滑度的综合代价函数,使用遗传算法迭代搜索最优控制点组合.此外,考虑到大洋长航程路径规划中时间跨度长的特点,将出发时间作为路径优化参数,对比分析不同出发时间对行程用时的影响.仿真表明,所提出的路径规划策略能够有效提升大范围动态流场中欠驱动无人船的平均航速,缩短目标抵达时间.同时,在大范围长时序航行中,选择适当的出发时间可以进一步缩短行程用时.
Research on long-range path planning for environment-driven unmanned ships
Environmentally driver unmanned vehicles,such as wave gliders,saildrone,etc.,due to their own low speed,underdrive and weak maneuverability,are significantly disturbed by ocean currents when navigating in the ocean,and even lose control in some sea areas with strong ocean currents.In this paper,based on the priori known dynamic flow field,the path of the unmanned ship is randomly generated by the B-spline control points.Then calculating the comprehensive cost function of each path,which includes path distance,navigation speed and path smoothness.And using the genetic algorithm iteratively searches for the optimal combination of control points.In addition,comparing and analyzing the impact of depar-ture time on travel time,because of the characteristics of long voyage route planning in ocean.Simulation results show that the proposed path planning strategy can effectively increase the average speed of the unmanned vehicle in a large-scale dy-namic flow field and shorten the target arrival time.At the same time,in the large-scale and long-sequence voyage,choosing an appropriate departure time can further shorten the travel time.

dynamic flow fieldlong voyageunderdrive unmanned shippath planninggenetic algorithmB-spline

廖年游、王鹏、刘然然、黄瑞、徐华、田新亮

展开 >

上海交通大学海洋工程国家重点实验室,上海 200240

上海交通大学三亚崖州湾深海科技研究院,海南三亚 572000

自然资源部第三海洋研究所,福建厦门 361000

动态流场 大范围长时序 欠驱动无人船 路径规划 遗传算法 B样条曲线

国家自然科学基金联合基金重点项目

U20A20328

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(14)
  • 4