首页|基于视觉传达的船舶智能导航人机交互界面设计

基于视觉传达的船舶智能导航人机交互界面设计

扫码查看
为设计直观、易于理解的船舶智能导航人机交互界面,研究基于视觉传达的船舶智能导航人机交互界面设计方法.为将重要视觉感知因素布局在对应级别的视觉感知区域,该方法将船舶智能导航人机交互界面可视性区域进行等级划分;使用序关系分析法,计算人机交互界面每个视觉感知元素重要性;将各个视觉感知元素结合自身重要性,布局于人机交互界面不同可视性区域,设计布局方案的目标函数为视觉传达指数最大,由人工蜂群算法求解满足目标函数与约束的交互界面视觉感知元素布局方案.实验结果表明,所提方法设计的船舶智能导航人机交互界面视觉传达指数高达0.98,工作人员对此界面的瞳孔直径均值、注视时间均值变小,界面信息易于理解.
Design of human-machine interaction interface for ship intelligent navigation based on visual communication
To design an intuitive and easily understandable human-machine interaction interface for ship intelligent navigation,a visual communication based design method for ship intelligent navigation human-machine interaction interface is studied.To layout important visual perception factors in the corresponding level of visual perception area,this method di-vides the visibility area of the human-machine interaction interface for ship intelligent navigation into levels.Using the se-quential relationship analysis method,calculate the importance of each visual perception element in the human-computer in-teraction interface.Combining various visual perception elements with their own importance,layout them in different visibil-ity areas of the human-computer interaction interface.The objective function of the layout scheme is to maximize the visual communication index.The artificial bee colony algorithm is used to solve the layout scheme of visual perception elements in the interaction interface that satisfies the objective function and constraints.The experimental results verify that the visual communication index of the ship intelligent navigation human-computer interaction interface designed by the proposed meth-od is as high as 0.98.The average pupil diameter and gaze time of the interface are reduced,and the interface information is easy to understand.

visual communicationship intelligent navigationhuman computer interactioninterface designarti-ficial bee colony algorithmvisual area classification

王猛

展开 >

郑州科技学院,河南郑州 450064

视觉传达 船舶智能导航 人机交互 界面设计 人工蜂群算法 可视性区域等级划分

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(14)
  • 4