首页|基于改进EfficientNet的水下图像识别

基于改进EfficientNet的水下图像识别

扫码查看
针对水下图像存在细节模糊、多尺度以及识别模型计算资源大等问题,提出一种改进EfficientNet的图像识别模型.该模型通过迁移学习在公开数据集上训练得到初始模型参数,提出自适应参数化修正线性单元激活函数(Adaptively Parametric ReLU,APRelu)和基于选择性内核网络的注意力(Selective Kernel Network,SK)模块加强处理图像的细节特征和多尺度问题.通过保留所有MBConv6模块中的第一个Layer,并在最后一个MBConv6模块后嵌入BN和APRelu模块,加快其收敛速度并去除冗余特征.使用数据增强、十折交叉验证、快照集成等策略提高模型性能.实验对比表明,该模型在测试集上的准确率达到了 97.32%,相对于改进前提高了 3.75%,具有较高的识别性能.
Underwater image recognition based on improved EfficientNet
An improved Efficientnet image recognition model was proposed to solve the problems of fuzzy details,multi-scale and large computing resources for underwater images.The initial model parameters were obtained by training the model on the open data set through transfer learning.Adaptive Parametric ReLU(APRelu)and Selective Kernel Network(SK)based modules are proposed to enhance the processing of image detail features and multi-scale problems.By keeping the first Layer in all MBConv6 modules and embedding the BN and APRelu module after the last MBConv6 module,it speeds up its convergence and removes redundant features.Improve model performance by using data enhancement,10-fold cross-validation,snapshot integration and other strategies.The experimental comparison shows that the accuracy of the mod-el on the test set reaches 97.32%,which is 3.75%percentage points higher than before the improvement,and has high recog-nition performance.

underwater image recognitiontransfer learningEfficientNetAPRelu activation functionSK atten-tion mechanism

丁元明、杨安娜、康伟

展开 >

大连大学通信与网络重点实验室,辽宁大连 116622

大连大学信息工程学院,辽宁大连 116622

水下图像识别 迁移学习 EfficientNet APRelu激活函数 SK注意力机制

国家自然科学基金资助项目

61901079

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(15)