首页|光学遥感图像中舰船识别方法研究

光学遥感图像中舰船识别方法研究

扫码查看
光遥感图像舰船目标在检测识别过程中会存在诸多干扰,导致无法精准识别出舰船目标,对此,研究光学遥感图像中舰船识别方法.首先,在光学遥感图像内提取舰船目标显著性区域,抑制云雾、海杂波与海域陆地等背景信息对舰船目标识别的影响,完成光学遥感图像舰船目标的粗识别.然后,基于提取到的光学遥感图像显著性区域,利用CNN网络对其进行舰船目标精识别.实验结果表明,设计方法可以有效提取光学遥感图像的舰船目标显著性区域,并提取显著性区域的舰船目标特征;舰船目标识别精度始终高于95%,具有实用性.
Research on ship identification methods in optical remote sensing images
There are many interferences in the detection and recognition process of ship targets in optical remote sens-ing images,which make it difficult to accurately identify ship targets.Therefore,research is conducted on ship recognition methods in optical remote sensing images.Firstly,extract the salient regions of ship targets in optical remote sensing images,suppress the influence of background information such as clouds,sea clutter,and sea land on ship target recognition,and complete rough recognition of ship targets in optical remote sensing images.Then,based on the extracted salient regions of optical remote sensing images,a CNN network is used for precise recognition of ship targets.The experimental results show that the design method can effectively extract the salient regions of ship targets in optical remote sensing images,and extract the ship target features in the salient regions;The accuracy of ship target recognition is always above 95%,which is practical.

convolutional neural networkoptical remote sensing imageship target recognitionspectral residual modelmax-mean valuefully connected layer

丁梦磊

展开 >

中国船舶集团有限公司第七一三研究所,河南郑州 450015

卷积神经网络 光学遥感图像 舰船目标识别 谱残差模型 最大值-均值 全连接层

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(16)
  • 6