首页|IACO-GA-IPSO融合算法AUV三维全局路径规划

IACO-GA-IPSO融合算法AUV三维全局路径规划

扫码查看
为了解决传统蚁群算法收敛速度慢,易陷入局部最优,传统粒子群算法搜索精度差,初始路径不规则等问题,提出一种融合了改进蚁群算法(IACO)、改进粒子群算法(IPSO)和遗传算法(GA)的IACO-GA-IPSO路径规划算法.首先定义三维海洋环境模型,将工作空间沿Z轴方向划分成水平的栅格平面;其次建立多标准的路径优劣评价模型;最后由融合算法规划路径:IACO算法生成次优种群,GA算法优化种群多样性,IPSO算法快速收敛到全局最优.实验结果表明,融合算法能充分发挥每种算法的优点,克服种群规模和收敛速度的矛盾,优化初始种群,提高全局搜索能力、局部搜索精度和算法运行效率,加快收敛速度并避免陷入局部最优路径.
AUV 3D global path planning based on IACO-GA-IPSO fusion algorithm
To overcome challenges faced by conventional ant colony and particle swarm optimization algorithms,an IACO-GA-IPSO path planning algorithm is proposed,which integrates the improved ant colony algorithm(IACO),im-proved particle swarm algorithm(IPSO),and genetic algorithm(GA).Firstly,a 3D marine environment model is defined,with the workspace divided into horizontal grid planes along the Z-axis.Secondly,A multi-standard path evaluation model is established.Finally,the fusion algorithm generates paths:the IACO algorithm generates a suboptimal population,the GA al-gorithm optimizes population diversity,and the IPSO algorithm quickly converges to the global optimum.The experimental results show that the fusion algorithm can fully leverage the advantages of each algorithm,overcome the contradiction between population size and convergence speed,optimize the initial population,improve global search ability,local search accuracy,and algorithm operation efficiency,accelerate convergence speed,and avoid falling into local optimal paths.

AUV 3D path planningfusion intelligent algorithmimproved ant colony algorithmimproved particle swarm algorithmgenetic algorithm

刘新宇、赵俊涛、佘莹莹、张英浩

展开 >

武汉第二船舶设计研究所,湖北 武汉 430205

AUV三维路径规划 融合智能算法 改进蚁群算法 改进粒子群算法 遗传算法

2024

舰船科学技术
中国舰船研究院,中国船舶信息中心

舰船科学技术

CSTPCD北大核心
影响因子:0.373
ISSN:1672-7649
年,卷(期):2024.46(18)